
 1

December 5, 2007
CEN 5011 – Advanced Software Engineering
Professor: Peter Clarke

Team #1
Integrants:

1. Batista, Raidel 2. Bhattacharya, Abhishek
3. Hernandez, Frank 4. Hernandez, Marylurdys

5. Monteiro, Eduardo 6. Zhao, Guangqiang

 2

Abstract

Today we encounter several types of communication applications and technologies: chat

messaging, voice over IP, cellular telephony, etc. Typically, the development of a communication

application that integrates these diverse technologies is a complex and costly process; especially a

model that abstracts out the specific implementation platforms. This is despite of the fact that

there currently exist visual environments and high-level programming languages. Recently, there

has been some work done in this direction.

This document contains the requirements and system model documentations for a system

based on the research done by FIU-SCIS, which we call “User-Centric Communication

Middleware”. This system will abstract the layer communication and doing so speed the

development of future multimedia applications. The systems was implementing following the

Unified Software Development approach.

 3

 4

Table of Contents

Abstract ... 1
1. Introduction... 6

1.1 Purpose of System... 6
1.2 Scope of System.. 7
1.3 Analysis and Design Methodology... 7
1.4 Definitions, Acronyms, and Abbreviations .. 8
1.5 Overview of Document... 8

2. Current Systems .. 10
3. Project Plan .. 11

3.1 Project Organization ... 11
3.2 Hardware/Software Requirements .. 13
3.3 Work Breakdown.. 13
3.4 Project Cost Estimate.. 14

4. Requirements of System ... 17
4.1 Functional and Nonfunctional Requirements ... 18

4.1.1 Overview.. 18
4.1.2 Functional Requirements ... 18
4.1.3 Non-Functional Requirements ... 18

4.2 Use case diagrams... 19
4.3 Requirement Analysis... 24

5. Proposed Software Architecture ... 25
5.1 Overview – Package Diagram .. 26
5.2 Subsystem Decomposition.. 27
5.3 Hardware and Software Mapping ... 28
5.4 Persistent Data Management... 29

6. Object Design.. 30
6.1 Overview – Minimal Class Diagram .. 31

6.1.1 Minimal Class Diagram ... 31
6.1.2 Class Description ... 32

6.2 State Machine.. 35
6.3 Object Interaction.. 36

6.4 Detailed Class Design ... 45
6.4.1 Design Patterns .. 45
6.4.2 Class Description ... 45

7. Testing Process ... 51
7.1 System Test... 51
7.2 Subsystem Test ... 68
7.3 Unit Test.. 69
7.4 Evaluation of Tests ... 70

8. Glossary .. 79
9. Signature Page ... 80
10. Appendix.. 81

10.1 Appendix A – Project Schedule. ... 81
10.2 Appendix B – Use Case with Nonfunctional Requirements................................. 83

 5

10.3 Appendix C – User Interface designs. .. 128
10.4 Appendix D – Detailed Class Diagrams ... 137
10.5 Appendix E – Class Interfaces.. 142
10.6 Appendix F – Documented Code for Test Driver... 222
10.7 Appendix G – Diary of meeting and tasks.. 224

 6

1. Introduction

In this chapter is the introduction to User-Centric Communication Middleware. In this

chapter, the purpose and scope of the system, as well as any necessary term definitions,

acronyms, and abbreviations shall be defined. Finally, an overview of this document shall be

outlined.

1.1 Purpose of System

In recent years, communications have been shifting dramatically from the phone lines

towards the digital form. Chat messaging, video conferencing, voice over IP, and countless

other forms of digital communication are taking over. It is cheaper, faster, and increasingly

more reliable as technology improves. Thus, many communication services are emerging to

supply this rapid increase of demand. Many of the services that are provided are very similar

in nature that follows a vertical development approach where each application is built on top

of a low-level network abstraction. This development approach is what drives the cost of

developing this application up. Also is this approach that slows down the pace of innovation

of the new generation communication applications. The User-Centric Communication

Middleware aims at solving this problem. The UCM aims to provide unified higher-level

abstraction for the class of multimedia communication applications.

 7

Fig. 1.1.1 CVM Design

Description: This is a representation of the CVM system. From this system we will be

implementing the UCM layer. This layer will handle the communication between the Synthesis

Engine and the Network Communication Broker.

1.2 Scope of System

The UCM system will practically allow a user to create communication applications without

having to worry about creating the network protocol handlers every time. The system will lie

under the Synthesis Engine, and over the Network Communication Broker. The system will

then interpret the UCM control scripts output by the Synthesis Engine; it will log these

control events, and then call NCB-specific commands. UCM will provide unified higher-level

abstraction for the class of multimedia communication applications

1.3 Analysis and Design Methodology

The Unified Software Development Process (USDP) was used in the development of this

project. The main reason is because it provides traceability features, which is important as it

 8

provides means for mapping model artifacts among several stages of the project, and it is use

case driven.

In addition, we eased the design of the system by using architectural and design patterns. The

architectural patterns used are: repository and microkernel, whereas the design patterns:

Command, Façade, Singleton, and Strategy.

We used the UML 2 notation for specifying the different artifacts of the system. The UML

models used in the project are: uses case diagrams, class diagrams, and sequence diagrams,

UML profiles. The following figure shows how the different phases of the USDP process are

related.

1.4 Definitions, Acronyms, and Abbreviations

CT – Cost & Unit Test.

CVM – Communication Virtual Machine.

DD – Detailed Design.

IT – Integration Test.

NCB – Network Communication Broker.

PD – Product Design.

QoS – Quality of Service.

RQ – Requirements.

SE – Name of the overlaying layer that sits atop UCM, Synthesis Engine.

UCM – User-Centric Communication Middleware.

1.5 Overview of Document

The rest of this document consists of more detailed information about the development

process of UCM. This is broken down into seven more chapters. Chapter 2 descirbes the

current system. Chapter 3 contains the project schedule and tasks. Chapter 4 introduces the

system’s use cases with both functional and nonfunctional requirements. Chapter 5 describes

the proposed system architecture along with the subsystem decomposition, hardware and

software mapping, and persistent data management. Chapter 6 contins the models produced

during the object design phase. Chapter 7 contains the test cases and the results of the tests

made to to the system. Chapter 8 includes a glossary of terms used in this document for the

 9

general reader. Chapter 9 contains a page with the signature of the team members. Chapter

10 contains the appendices consisting of supporting documentation and visual aids for the

previous chapters. Appendix A contains the project schedule. Appendix B contains the use

cases. Appendix C contains user interfaces, in the case of this system this is the API of NCB.

Appendix D has the detailed class diagrams of the system. Appendix E contains class

interfacesof all the subsytems implemented. Appendix F contains the documented test

drivers. Appendix G contains dairy of meeting tasks, in these all the meetings and tasks

assigned are described.

 10

2. Current Systems

The User-Centric Communication Middleware (UCM) is part of the CVM architecture,

which is supposed to take control scripts, generated from the synthesis engine and execute

them by invoking the APIs provided by NCB layer. However, UCM is not properly

implemented in the current CVM. With the current prototype, Synthesis Engine directly

interacts with NCB, bypassing the UCM layer, decreasing both system flexibility and

extensibility.

 Another problem with the current system is that the local repository facility is not actually

fully implemented. Storing schemas, and macros and other runtime information are not

supported by any layers of the prototype, resulting in disobedience of the original motivation

of the CVM paradigm: to provide QoS communication services with great ease and

flexibility.

 11

3. Project Plan

This section discusses the fundamental structure of the User-Centric Communication

Middleware (UCM for short) development plan. This includes the different roles involved in

creating this project, the hardware and software requirements important to its functionality

and maintenance, and the milestones and deliverables produced during each one of the phases

of the project.

3.1 Project Organization

The following figure displays the hierarchy of the roles involved in the UCM project

throughout the first phase of development:

 Phase I:

 Phase II

Leader
Frank

Hernandez

UCM Manager
Programmer
Eduardo M.

Guangqiang Z.

UCM

Interpreter
Programmer
Marylurdys H.

Parser
Programmer

Raidel B.

Minute Taker
Abhishek B.

Leader
Marylurdys
Hernandez

UCM Manager
Programmer

Frank H.

UCM

Interpreter
Programmer

Raidel B.
Guangqiang Z.

Parser
Programmer
Eduardo M.

Minute Taker
Abhishek B.

 12

 Phase III

Leader – Oversees all project tasks and ensures all milestones are reached. He/she manages

group meetings, answers questions regarding the project, and assigns work to each member of

the group.

Parse Programmer – Handles the design of the structure of the UCM Control Script parser.

Will also handle the main concerns with the implementation of the parser.

UCM Manager Programmer – Handles the implementation of the UCM_Manager

Subsystem. Has the responsibility of programming all of the functionality of the

UCM_Manager.

UCM Interpreter Programmer – Handles the implementation of the UCM_Interpreter

Subsystem. Has the responsibility of programming all of the functionality of the

UCM_Interpreter.

Minute Taker – Keeps a documented journal of all meetings. These journals include time

and date, attendance, and the topics discussed during each meeting. He distributes this

information to the rest of the group by the end of the week.

Leader
Eduardo
Monteiro

UCM Manager
Programmers

Raidel B.

UCM

Interpreter
Programmers

Frank H.

Parser
Programmers
Marylurdys H.

Minute Taker
Abhishek B.

 13

3.2 Hardware/Software Requirements

Hardware needed

1. Processor: 1Ghz or faster

2. Memory: 512 MB of RAM

3. Hard Drive: 40 GB

Software needed

1. Windows XP Professional

2. Rational Rose

3. StarUML

4. Microsoft Word

5. Microsoft Visio

6. Microsoft Project

7. Microsoft PowerPoint

8. Eclipse 3.2

9. Costar 7.0 Demo

10. Janino library

3.3 Work Breakdown

Tasks and Milestones

The tasks in the development of UCM were divided into three milestones:

Milestone 1 consisted of the completion of the Use Case Phase and the Analysis Phase. This

resulted in a software requirements document handed in to the client. It also covered Object

and Dynamic models. Milestone 2 consisted of the completion of Design Phase and started

on the design and implementation of the microkernel of the UCM Interpreter. This included

the implementation of the control script parser. This resulted in a design document handed in

to the client. Finally, Milestone 3 consisted of the completion of the Testing Phase as well as

the completion of the entire project. Below are the list of tasks, please refer to Appendix A

for a more graphical representation. Refer to Appendix A for project schedule and Appendix

B for diary.

 14

3.4 Project Cost Estimate

The cost for the project was calculated via the use of COCOMO II model for project cost

calculation. The tool that was used was Costa 7.0 Demo. This was selected for the large amount

of detail and information that is generated as well as its usability. Bellow are the tables that were

found more relevant to the cost estimate calculation. The cost model used in this calculations is

PMnominal = A x (Size)B where PM – Person Months, A – multiplicative effects on effort with

projects of increasing size, B – accounts for the relative economies or diseconomies of scale

encountered for s/w projects of different sizes B = 0.91 x 0.01 x ∑ wi and wi - scale drivers.

 15

Fig 3.4.1 UCM_Estimate Cost Breakdown

Description: This table shows the breakdown of the cost among the stages of the software

creation. The stages are: RQ – Requirements, PD – Product Design, DD – Detailed Design,

CT – Code & Unit Test and IT – Integration Test.

 16

Fig 3.4.2 UCM_Estimate Cost Driver

Description: This table shows the cost drivers affecting the cost of our system. For specific

meaning of each of the divers please refer to the COCOMO II specifications and manual.

Fig 3.4.3 UCM_Estimate Effort

Description: This table shows the effort report for our system. Effort is calculated in P/M or

Person-Months required for this project.

 17

4. Requirements of System

In recent years, communications have been shifting dramatically from the phone lines

towards the digital form. Chat messaging, video conferencing, voice over IP, and countless

other forms of digital communication are taking over. It is cheaper, faster, and increasingly

more reliable as technology improves. Thus, many communication services are emerging to

supply this rapid increase of demand. Many of the services that are provided are very similar

in nature that follows a vertical development approach where each application is built on top

of a low-level network abstraction. This development approach is what drives the cost of

developing this application up. Also is this approach that slows down the pace of innovation

of the new generation communication applications. The User-Centric Communication

Middleware aims at solving this problem. The UCM aims to provide unified higher-level

abstraction for the class of multimedia communication applications.

Fig. 4.1.1 CVM Design

Description: This is a representation of the CVM system. From this system we will be

implementing the UCM layer. This layer will handle the communication between the Synthesis

Engine and the Network Communication Broker.

 18

4.1 Functional and Nonfunctional Requirements

4.1.1 Overview

The UCM system will practically allow a user to create communication applications without

having to worry about creating the network protocol handlers every time. The system will lie

under the Synthesis Engine, and over the Network Communication Broker. The system will

then interpret the UCM control scripts output by the Synthesis Engine; it will log these

control events, and then call NCB-specific commands. UCM will provide unified higher-level

abstraction for the class of multimedia communication applications

4.1.2 Functional Requirements
The system shall:

1. Parse a control script sent from the Synthesis Engine. Refer to use cases UCM_01-

24 in Appendix B.

2. Find the macro for each control command in the control script. Refer to use cases

UCM_01-24 in Appendix B.

3. Notify the Synthesis Engine of any macro in the control script that is not defined in

the repository. Refer to use cases UCM_01-24 in Appendix B.

4. Execute each command macro and call the underlying NCB. Refer to use cases

UCM_01-24 in Appendix B.

5. Notify the Synthesis Engine of events relevant to this layer. Refer to use cases

UCM_01-24 in Appendix B.

6. The possible control command supported by the system are:

a. Login

b. Logout

c. CreateConnection

d. DeclineConnection

e. SendMedia

f. AddParticipants

g. RemoveParticipants

Note: See Appendix B for use cases UCM_01-UCM_07 and UCM_09

4.1.3 Non-Functional Requirements

1. Usability

 19

a. System users are other subsystems(NCB and SE), which communicate

through well-defined scripts and interfaces that are easy to operate for other

systems.

b. This use case should provide nice predefined error messages to the user.

2. Reliability

a. 5%-10% failure rate for every 24 hours of use.

3. Performance

a. Requests should be handled in less than 2 minutes, if no other requests exist.

Response time can be more depending on the number of participants in the

active connection.

b. The total process for searching the macro definition should not be more than

5 seconds.

4. Supportability

a. The command must be properly supported by the Event handler of UCM

b. The 15 exceptions that might result from the runtime execution must be

handled.

5. Implementation

a. Must be implemented in Java.

4.2 Use case diagrams.

The actors for UCM are the NCB and the SE (see Appendix 8). The SE passes a control script
down to the UCM by means of the executeScript() call. The UCM then parses this scripts and
performs class the NCB to satisfy the request from SE. NCB then signals back the success or
failure of this call to UCM via events.

 20

System

Event Handler

Conference Handler

Media Handler

Execution Handler

Connection Handler

Synthesis Engine (SE)
Network Communication Broker (NCB)

Fig. A.1 Use Case Model Design

Description: This is the use case model for the UCM system. This is a representation all of the

possible interactions that both actors SE and NCB can have with the system. Packages are used

to simplify the diagram.

 21

Event Handler

Create Event

Load Event State

Save Event State

Synthesis Engine (SE)

Network Communication Broker (NCB)

Fig. A.2 Use Case Model – Event Handler Package

Description: This is the use case model of the Event Handler package for the UCM system.

These use cases will occur anytime that there is any kind of event that need handling. These

events will range from basic execution to mere notifications of actions.

Media Handler

Send Media

Send Form

Send Demand Form

Send Schema

Receive Schema

Synthesis Engine (SE)
Network Communication Broker (NCB)

Media Enabler

Fig. A.3 Use Case Model – Media Handler Package

Description: This is the use case model of the Media Handler package for the UCM system.

These use cases will occur anytime that the system attempts to initialize any kind of media

operation. These operations include the sending of files, schema, and even forms, among

others.

 22

Conference Handler

Create Conference Video

Create 2-way Video

Create Conference Audio

Synthesis Engine (SE) Network Communication Broker (NCB)

<<extend>>

Create 2-way Audio

<<extend>>

Fig. A.4 Use Case Model – Conference Handler Package

Description: This is the use case model of the Conference Handler package for the UCM

system. These use cases will occur anytime that there is any kind of conference creation. This

use cases represent how UCM handles the creation of basic conference protocols.

Execution Handler

Load Macro

Save Macro Instance

Create Exception

Handle Exception

Synthesis Engine (SE)

Fig. A.5 Use Case Model – Execution Handler Package

Description: This is the use case model of the Execution Handler package for the UCM

system. These use cases will occur anytime that there are any user initiations in the system.

 23

Connection Handler

login

logout

Create Connection

Decline Connection

Add Participant

Remove Participant

Synthesis Engine (SE) Network Communication Broker (NCB)

Fig. A.6 Use Case Model – Connection Handler Package

Description: This is the use case model of the Connection Handler package for the UCM

system. These use cases represent the possible steps taken by the system when handling the

basic connection issues. Such basic connection issues include, login into the system, log out,

and create connection and so on.

Media Enabler

Enable Media Initiator

Enable Media Receiver

Synthesis Engine (SE)
Network Communication Broker (NCB)

Fig. A.7 Use Case Model – Media Enabler Package

Description: This is the use case model of the Media Enabler package for the UCM system.

This package was created to abstract the Media Handler Package.

 24

4.3 Requirement Analysis

The Requirements Analysis was partly performed by extracting requirements from

Researchers involved in the CVM project. System details discussed in the CVM meetings

were incorporated into the development of the UCM layer. Additional requirements were

obtained from documents and publications that were produced outside of class by the group

responsible for the CVM project. Examples of such documents are "CVM - A

Communication Virtual Machine" by Deng et al, "UCM State Machine", and "UCM Control

Script". Any assumptions were verified with the professor and the parties involved in the

CVM project.

 25

5. Proposed Software Architecture

The UCM layer will be broken down into several subsystems. These subsystems will be

represented in a package diagram, according to two architectural patterns that were chosen

with proper justification. Also, the architecture will be represented by some UML profiles,

which will consequently lead to the transformations expected from the architecture to the

platform. Finally, the subsystems will be explained briefly.

 26

5.1 Overview – Package Diagram

User-Centric Communication Middleware (UCM)

iUCM_SE_Interface

iUCM_NCB_Interface

UCM_Manager
<<Subsystem>>

UCM_Interpreter
<<Subsystem>>

UCM_Repository
<<Subsystem>>

Synthesis Engine (SE)
<<Overlaying System>>

Network Communication Broker(NCB)
<<Underlaying System>>

Microkernel Architecture
chose for the implementation
of the UCM_Interpreter
Package.

Repository Architecture
 Used to store
the central data of
Macros.

UCM_EventHandler
<<Subsytem>>

UCM_ExceptionHandler
<<Subsystem>>

Both system and
Actor. Modeled for
the sake of understanding

Both system and
Actor. Modeled for
the sake of understanding

Fig. 5.1 UCM Architecture
Description: This is the package diagram for UCM. It displays the subsystem decomposition

of the architecture.

Microkernel Architecture: Our project uses the Microkernel Architectural style to enclose

the functionality of the UCM Interpreter as a subsystem that coordinates and manages the

global control flow of the UCM framework. It allows and manages the access to the core

functionality of the system by providing a complete interface to the other subsystems,

 27

including those that serve as bridges to the layers above and below UCM, the Exception

Handler and the Repository. By enclosing the core functionality, it also serves as a socket that

allows plugging in future desired functionality into the system.

Repository Architecture: The UCM Repository, the subsystem that contains the macros

with the source code to execute the different functions allowed by the system and specified in

the use cases, is designed using the Repository Architectural style. The UCM Repository is a

single data structure whose concurrency and integrity issues management is facilitated

through this architectural style.

5.2 Subsystem Decomposition

Subsystems:

UCM_Manager: UCM_Manager coordinates the activities of UCM. The UCM_Manager

will delegate the script received to the UCM_Interpreter. Also it will notify the SE of any

events or exceptions that must be known by it. UCM_01 – UCM_24.

UCM_Repository: UCM_Repository stores the macros for the execution of the control

scripts. Macros can be added at any time. This ensures the extensibility of the application

without having to write or change any core code. Related use cases: UCM_01 – UCM_24.

UCM_Interpreter: UCM_Interpreter parses and interprets the control scripts, loads macros

from the repository and makes a sequence of calls to the NCB to realize the communication

described in the control script. Related use cases: UCM_01 – UCM_24.

UCM_ExceptionHandler: The UCM_ExceptionHandler will be responsible for deciding

how to act on exceptions received due to control script faults, NCB specific messages, or bad

function call returns. Related use cases: UCM_19 and UCM_20.

UCM_EventHandler: The UCM_EventHandler will coordinate and orchestrate the events

raised by other subsystems as well as deciding what to do in each case. Related use cases:

UCM_21 – UCM_23.

 28

Synthesis Engine (System/Actor): The Synthesis Engine is composed of a suite of

algorithms that automatically synthesize a user communication schema instance to an

executable form called communication control script. Negotiates the schema among

participants of a communication to ensure that all parties agree to a consistent schema.

Automatically transforms this schema.

Network Communication Broker (System/Actor): The Network Communication

Broker provides a network-independent API to the UCM and works with the underlying

network protocols to deliver the communication services. Utilizes and coordinates the

available, low-level network and hardware services. Provides self-management in response to

dynamics of the underlying infrastructure.

5.3 Hardware and Software Mapping

UCM - The UCM software and hardware requirements are highly flexible. While most

communication systems are Operating System dependent, the UCM only needs a Java Virtual

Machine to run. Since Java can be installed on a wide array of devices ranging from high

performance servers to remote controls and kitchen ovens, the hardware running under the

Java Virtual Machine is irrelevant. The only requirements are a network connection, input

device, speakers and microphone.

Repository - The repository that stores the macros to be executed by the UCM is platform

independent. It abstracts the storage used by maintaining general storage and retrieval

methods that work for databases or file systems. Other types of storage systems may be used

by creating additional classes that interact with the Repository class and create an interface

for the underlying storage method.

 29

:networkedDevice
<<device>>

:directoryStructure
<<fileSystem>>

UCM

DBserver
<<server>>

ODBC

FileRepository
<<artifact>>

DatabaseRepository
<<artifact>>

FileSystem calls

Fig 5.3.1 Deployment Diagram

Description: This is the deployment diagram for the UCM system.

5.4 Persistent Data Management

The persistent data identified for the UCM framework at this stage of development consist of

the macro information for those functions recognized in the use cases. The data stored in the

repository, through a Relational Database Management System, contains a table called

Macros whose schema is defined as follows:

Macros {name:string, returnType:string, paramTypeList:string, paramNameList:string,

script:string}

Where name is the name of the function, returnType is the type of the object returned by the

function, paramTypeList is the list of the type of each parameter that has passed as the

argument to the function, paramNameList is the name of each parameter, and script is the

actual source code that contains the functionality of the function.

In the case of the paramTypeList and the paramNameList, string objects are retrieved from

the database and parsed into Array Lists to pass as parameters of the Macro object

constructed by the repository and returned to the UCM Interpreter.

 30

6. Object Design

This section covers in detail the main view the structure of the application to be designed. It

will detail the basic idea of the functionality of the software. It will also discuss some of the

design patterns chosen for the implementation of the sections of UCM. This section will

explain some of the reasons for choosing these patterns mainly the ones that made them a

valid choice.

This section will also explain in detail the classes that will be created. It will explain their

functionality and purpose. It will also show some of the behavior of the system under some

user interactions.

 31

6.1 Overview – Minimal Class Diagram

6.1.1 Minimal Class Diagram

UCM_I_Facade
<<UCM_Interpreter>>

UCM_Interepreter_Mk
<<UCM_Interpreter>>

-instance
UCM_Interpreter_Adapter

<<UCM_Interpreter>>

initialize communication

Command
<<UCM_Interpreter>>

MacroCommand
<<UCM_Interpreter>>

MacroNode
<<UCM_Interpreter>>

MacroInterpreter
<<UCM_Interpreter>>

Macro
<<UCM_Interpreter>>

Script
<<UCM_Interpreter>>

Call
<<UCM_Interpreter>>

Parser
<<UCM_Interpreter>>

UCM_M_Facade
<<UCM_Manager>>

UCMManager
<<UCM_Manager>>

UCM_R_Facade
<<UCM_Repository>>

Sources
<<UCM_Repository>>

MacroLoader
<<UCM_Repository>>

SourceDBLoader
<<UCM_Repository>>

SourceFileSysLoader
<<UCM_Repository>>

-instance
UCMEventHandler

<<UCM_EventHandler>>

EnvVariable
<<UCM_Interpreter>>

ConnectionCreatedReply_Event
<<UCM_EventHandler>>

Handles_Event
<<UCM_EventHandler>>

NotifyLoginReply_Event
<<UCM_EventHandler>>

PartyAddedReply_Event
<<UCM_EventHandler>>

PartyRemovedReply_Event
<<UCM_EventHandler>>

SendSchemaReply_Event
<<UCM_EventHandler>> ConnectionDeclinedReply_Event

<<UCM_EventHandler>>

NotifyLogoffReply_Event
<<UCM_EventHandler>>

MediaInitiatorEnableReply_Event

UCMExceptionHandler
<<UCM_ExceptionHandler>>

DataNotFoundException
<<UCM_ExceptionHandler>>

IllegalMacroArgumentException
<<UCM_ExceptionHandler>>

InvalidScriptException
<<UCM_ExceptionHandler>>

MacroNotFoundException
<<UCM_ExceptionHandler>>

NoSessionException
<<UCM_ExceptionHandler>>

PartyNotFoundException
<<UCM_ExceptionHandler>>

-instance

ControlSchemaNotSentException
<<UCM_ExceptionHandler>>

DataSchemaNotSentException
<<UCM_ExceptionHandler>>

LoginException
<<UCM_ExceptionHandler>>

PartyNotAddedException
<<UCM_ExceptionHandler>>

SchemaNotSavedException
<<UCM_ExceptionHandler>>

MSAccessConnection
<<UCM_Repository>>

MySQLConnection
<<UCM_Repository>>

Rep_Properties
<<UCM_Repository>>

Rep_Default_Properties
<<UCM_Repository>>

Fig 6.1.1.1 Minimal Class Diagram

Description: This is the minimal class diagram of UCM. Show class interaction between subsystems.

 32

6.1.2 Class Description
UCM_M_Façade: Façade class that provides an interface into the UCM_Manager

subsystem. The purpose of this class is to aid future expansion of this subsystem.

UCMManager: Controls the workflow inside the UCM system. This class also notifies the

overlying system of any event that are specific to it.

UCM_I_Façade: Façade class that provides an interface into the UCM_Interpreter

subsystem. The purpose of this class is to aid future expansion of this subsystem.

UCM_Interepreter_Mk: This is the microkernel as in the architecture pattern. This class

control the parsing of scripts, the loading of macros, and the queuing and execution of

commands.

UCM_Interpreter_Adapter: Adapter class as in the microkernel architecture pattern. It

makes the parse script requests to the UCM_Interepreter_Mk class.

Command (Interface): This is the Command Design Pattern interface.

MacroCommand: This class handles encapsulation of the execution of macros inside our

system. This is part of the incorporation of the command design pattern into our system.

MacroNode: This class encapsulates the script editor and the parameters needed to execute a

macro. This node is then encapsulated by the MacroCommand class. This is the ‘Receiver’ of

the command design pattern.

Macro: This class encapsulates all the data specific to any macro. This object simplifies the

transfer of information across subsystems dealing with macros.

MacroInterpreter: MacroInterpreter encapsulates the creation of a script evaluator object

which will be executed using Janino inside the MacroCommand execute.

UCMEventHandler: This class handles all the possible events that the NCB layer fires.

 33

ConnectionCreatedReply_Event: This class encapsulates the event source and the reply

messages of invoking createSession coming from NCB into a single event.

NotifyLoginReply_Event: This class encapsulates the event source and the reply messages

of invoking login method coming from NCB into a single event.

SendSchemaReply_Event: This class encapsulates the event source and the reply messages

of invoking sendSchema coming from NCB into a single event.

PartyAddedReply_Event: This class encapsulates the event source and the reply messages

of invoking addParty coming from NCB into a single event.

 PartyRemovedReply_Event: This class encapsulates the event source and the reply

messages of invoking removeParty coming from NCB into a single event.

UCMExceptionHandler: This class handles the possible exceptions resulting in the runtime

of the script interpretation process.

MacroNotFoundException: This class defines the exception thrown by the macro loader

when the macro is not found in the local repository.

IllegalArgumentException: This class defines the exception thrown by the macro

Interpreter when the macro has an unexpected argument passed to it.

PartyNotFoundException: This class defines the exception thrown by the UCM Interpreter

when it is trying to remove a party that is not in the current connection.

NoSessionException: This class defines the exception thrown by the UCM Interpreter when

it is trying to add participants or send data in the connection that has no corresponding

session in the NCB layer.

DataNotFoundException: This class defines the exception thrown by the UCM Interpreter

when it is trying to send data that could not be found locally or on the network.

 34

InvalidScriptException: This class defines the exception thrown by the UCM Interpreter

when it is trying to pass the string received from Synthesis Engine.

UCM_R_Façade: Façade class that provides an interface into the UCM_Repository

subsystem. The purpose of this class is to aid future expansion of this subsystem.

Sources: Interface to Source loaders.

MacroLoader: The MacroLoader class retrieves, from a given Source (a Database, a File

System, etc), the information necessary and creates a Macro.

SourceDBLoader: This class retrieves a Macro from a database given a function name.

There is no overloading of a function name.

SourceFileSysLoader: This class retrieves a Macro from a file system given a function

name.

Parser: This class parses the control scripts.

Script: Data structure that holds a control script in memory.

Call: Call holds function calls in a given control script.

 35

6.2 State Machine

declineConnection : [successful] / InitialState

ConnectionCreated

createConnection : [valid] / ConnectionCreated
LocalParticipantUpdate

NegotiationCompleted
RemoteSchemaReceived

ResponseWait

AddParticipant : [successful] / LocalParticipantUpdate sendSchema : [successful] / ResponseWait

closeConnection : [successful] / InitialState

completeNegotiation : [successful] / NegotiationCompleted

receiveSchema : [valid] / RemoteSchemaReceived

acceptConnection : [valid] / LocalParticipantUpdate
Add/RemoveParticipant : [successful] / LocalparticipantUpdate

receiveOK : [OK] / NegotiationCompleted

sendSchema : [successful] / ResponseWait

Add/RemoveParticipant : [successful] / LocalParticipantUpdate

DataTransmissionPolicy

transmitData : [successful] / NegotiationCompleted

sendData : [successful] / DataTransmissionPolicy

reNegotiateparticipant : [successful] / LocalParticipantUpdate

Fig 6.2.1 UCM State Machine

Description: This state machine represents all the states in which the UCM will be when establishing communications. A connection is first

created, then every participant is added. Once all the participants are added the schema is sent, and when the negociation is competed the

transmission policy is sent.

 36

6.3 Object Interaction
This section contains the redefined version of the sequence diagram first created for the

requirement phase. These sequence diagrams are now more specific and represent the interaction

between objects. These objects are now more closely related to the classes that will be

implemented.

 37

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : sessionCreated

13 : sessionCreated

Fig 6.3.1 Sequence Diagram - Create Connection

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘CreateConnection’

command from SE. A control script is received from the Synthesis Engine, by the manager, then the manager delegates it to the interpreter which

then parses it. Once the script is parsed the macro for the execution of the ‘CreateConnection’ command is loaded, and initialized by the values

passed in the script. Finally it is executed to make calls from the Network Communication Broker to the to the Synthesis Engine.

 38

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : sessionDestroyed

13 : sessionDestroyed

Fig. 6.3.2 Sequence Diagram - Destroy Connection

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘DestroyConnection’

command from SE. A control script is received from the Synthesis Engine, by the manager, then the manager delegates it to the interpreter which

then parses it. Once the script is parsed the macro for the execution of the ‘DestroyConnection’ command is loaded, and initialized by the values

passed in the script. Finally it is executed to make calls from the Network Communication Broker to the Synthesis Engine.

 39

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : userProfileCreated

13 : userProfileCreated

Fig. 6.3.3 Sequence Diagram - Login

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘login’ command from SE. A

control script is received from the Synthesis Engine, by the manager, then the manager delegates it to the interpreter which then parses it. Once the

script is parsed the macro for the execution of the ‘login’ command is loaded, and initialized by the values passed in the script. Finally it is

executed to make calls from the Network Communication Broker to the Synthesis Engine.

 40

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : logout

13 : logout

Fig. 6.3.4 Sequence Diagram - Logoff

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘logoff’ command from SE.

A control script is received from the Synthesis Engine, by the manager, then the manager delegates it to the interpreter which then parses it. Once

the script is parsed the macro for the execution of the ‘logoff’ command is loaded, and initialized by the values passed in the script. Finally it is

executed to make calls from Network Communication Broker to the Synthesis Engine.

 41

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : participantAdded

13 : participantAdded

Fig. 6.3.5 Sequence Diagram – Add Participant

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘addParticipant’ command

from SE. A control script is received from the Synthesis Engine by the manager, then the manager delegates it to the interpreter which then parses

it. Once the script is parsed the macro for the execution of the ‘addParticipant’ command is loaded, and initialized by the values passed in the

script. Finally it is executed to make calls from Network Communication Broker to the Synthesis Engine.

 42

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : partyRemoved

13 : partyRemoved

Fig. 6.3.6 Sequence Diagram – Remove Participant

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘removeParticipant’

command from SE. A control script is received from the Synthesis Engine by the manager, then the manager delegates it to the interpreter which

then parses it. Once the script is parsed the macro for the execution of the ‘removeParticipant’ command is loaded, and initialized by the values

passed in the script. Finally it is executed to make calls from Network Communication Broker to the Synthesis Engine.

 43

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : mediaSent

13 : mediaSent

Fig. 6.3.7 Sequence Diagram – Send Media

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing the ‘sendMedia’ command from

SE. A control script is received from the Synthesis Engine by the manager, then the manager delegates it to the interpreter which then parses it.

Once the script is parsed the macro for the execution of the ‘sendMedia’ command is loaded, and initialized by the values passed in the script.

Finally it is executed to make calls from Network Communication Broker to the Synthesis Engine.

 44

[each call]For

 : SE : NCB

 : UCM_M_Facade : UCMManager : UCM_I_Facade : UCM_Interpreter_Adapter : UCM_Interepreter_Mk : Parser : UCM_R_Facade : SourceDBLoader : UCMEventHandler

1 : executeScript()
2 : executeScript()

3 : parseScript()
4 : parseScript()

5 : parseScript()
6 : parse()

7 : loadMacro()

Create and execute
command.

8 : loader()

9 : create Connection Macro
10 : MCB Calls

11 : handleEvent()

12 : eventResult

13 : eventResult

Fig. 6.3.8 Sequence Diagram – Create 2-Way Audio

Description: This sequence diagram represents the steps that UCM takes for handling a control script containing a set of commands from SE to

create a complete 2-way audio communication. A control script is received from the Synthesis Engine, by the manager, then the manager delegates

it to the interpreter which then parses it. Once the script is parsed the macro for the execution of each of the commands is loaded, and initialized by

the values passed in the script. Finally each command is executed and calls are made from the Network Communication Broker to the Synthesis

Engine.

6.4 Detailed Class Design

6.4.1 Design Patterns

Singleton: Design pattern used to restrict instantiation of a class to one object. This design

patter was chosen for the Manager mainly because we did not want multiple copies of this

object floating around wasting memory. Since this is our stream manager we only need one.

Even though during implementation we could have decided to only have one instance of this

object it was not guaranteed that it would hold especially if someone else tries to update on

top of this. This design pattern was the best to make sure that no extra copies of the Manager

were floating around at all times.

Command: Design pattenr in which objects are used to represent actions. A command object

encapsulates an action and its parameters. The command pattern was chosen to guarantee a

control over the execution calls to the NCB API. This way we have control when and whether

or not a action gets to execute, thus preventing or canceling undesirable behavior, or even

threats as well as the logging of actions take to restart the system in the same state that it was

in the event of a failure.

Facade: This design pattern was chosen to decouple the subsystems from each other. The

facade pattern was also chosen to improve future evolution of the system.

Strategy: The strategy design pattern was chosen for the implementation for the repository

subsystem classes. The use of this design pattern will allow for future distinct implementation

of repositories. As of the macro data is stored in a database, with the use of the strategy

pattern the implementation of different repositories is simplified.

6.4.2 Class Description

UCM_M_Façade (Control Object): Façade class that provides an interface into the

UCM_Manager subsystem. The purpose of this class is to aid future expansion of this

subsystem. Refer to diagram C.1 in Appendix C and class and Appendix E for class interface

for classes and OCL statements.

 46

UCMManager: Controls the workflow inside the UCM system. This class also notifies the

overlying system of any event that are specific to it. Refer to diagram C.1 in Appendix C and

class and Appendix E for class interface.

UCM_I_Façade (Control Object): Façade class that provides an interface into the

UCM_Interpreter subsystem. The purpose of this class is to aid future expansion of this

subsystem. Refer to diagram C.2 in Appendix C and class and Appendix E for class interface

for classes and OCL statements.

UCM_Interepreter_Mk: This is the microkernel as in the architecture pattern. This class

control the parsing of scripts, the loading of macros, and the queuing and execution of

commands. Refer to diagram C.2 in Appendix C and class and Appendix E for class

interface.

UCM_Interpreter_Adapter: Adapter class as in the microkernel architecture pattern. It

makes the parse script requests to the UCM_Interepreter_Mk class. Refer to diagram C.2 in

Appendix C and class and Appendix E for class interface.

Command (Interface): This is the Command Design Pattern interface. Refer to diagram C.2

in Appendix C and class and Appendix E for class interface.

MacroCommand: This class handles encapsulation of the execution of macros inside our

system. This is part of the incorporation of the command design pattern into our system.

Refer to diagram C.2 in Appendix C and class and Appendix E for class interface.

MacroNode: This class encapsulates the script editor and the parameters needed to execute a

macro. This node is then encapsulated by the MacroCommand class. This is the ‘Receiver’ of

the command design pattern. Refer to diagram C.2 in Appendix C and class and Appendix E

for class interface.

Macro: This class encapsulates all the data specific to any macro. This object simplifies the

transfer of information across subsystems dealing with macros. Refer to diagram C.2 in

Appendix C and class and Appendix E for class interface.

 47

Parser: This class parses the control scripts that are passed down from the Synthesis Engine

and puts them in a data structure that is easier to handle and understand. Refer to diagram C.2

in Appendix C and class and Appendix E for class interface.

Script: Data structure that holds a control script in memory. Refer to diagram C.2 in

Appendix C and class and Appendix E for class interface.

Call: Call holds function calls in a given control script. Refer to diagram C.2 in Appendix C

and class and Appendix E for class interface.

MacroInterpreter: MacroInterpreter encapsulates the creation of a script evaluator object

which will be executed using Janino inside the MacroCommand execute. The main purpose

of this class is to receive a collection of parameter values and a macro object, which will

contain parsed macro information. The MacroInterpreter will then encapsulate the data in a

MacroNode for later execution. Refer to diagram C.2 in Appendix C and class and Appendix

E for class interface.

UCM_R_Façade (Control Object): Façade class that provides an interface into the

UCM_Repository subsystem. The purpose of this class is to aid future expansion of this

subsystem. Refer to diagram C.3 in Appendix C and class and Appendix E for class interface

for classes and OCL statements.

Sources: This class provides the interface to the Source Loader classes. Source Loaders can

be either from the File System or from a Database. This class plays the role of

AlgorithmInterface in the Strategy design pattern which helps to choose either of the

strategies(FileSys or Database) at runtime. Refer to diagram C.3 in Appendix C and class and

Appendix E for class interface.

MacroLoader: The MacroLoader class retrieves, from a given Source (a Database, a File

System, etc), the information necessary and creates a Macro. Refer to diagram C.3 in

Appendix C and class and Appendix E for class interface.

SourceDBLoader: This class retrieves a Macro from a database given a function name.

There is no overloading of a function name. The schema for the table Macros, stored in the

 48

Repository db, is {name:string, returnType:string, paramTypeList:string,

paramNameList:string, script:string}. Refer to diagram C.3 in Appendix C and class and

Appendix E for class interface.

SourceFileSysLoader: This class retrieves a Macro from a file system given a function

name. There is no overloading of a function name. This has been created for future

implementation availability. Refer to diagram C.3 in Appendix C and class and Appendix E

for class interface.

UCMEventHandler (Control Object): This class handles all the possible events that the

NCB layer fires. It then dispatches the events to the UCMManager for further processing, by

calling the notifyEvent interface of UCMManager. The current events that are handled by the

UCMEventHandler include: NotifyLoginReply_Event, SendSchemaReply_Event,

PartyAddedReply_Event, ConnectionCreatedReply_Event,

PartyRemovedReply_Event. Refer to diagram C.4 in Appendix C and class and Appendix E

for class interface for classes and OCL statements.

ConnectionCreatedReply_Event: This class encapsulates the event source and the reply

messages of invoking createSession coming from NCB into a single event. Refer to diagram

C.4 in Appendix C and class and Appendix E for class interface.

NotifyLoginReply_Event: This class encapsulates the event source and the reply messages

of invoking login method coming from NCB into a single event. Refer to diagram C.4 in

Appendix C and class and Appendix E for class interface.

SendSchemaReply_Event: This class encapsulates the event source and the reply messages

of invoking sendSchema coming from NCB into a single event. Refer to diagram C.4 in

Appendix C and class and Appendix E for class interface.

PartyAddedReply_Event: This class encapsulates the event source and the reply messages

of invoking addParty coming from NCB into a single event. Refer to diagram C.4 in

Appendix C and class and Appendix E for class interface.

 49

 PartyRemovedReply_Event: This class encapsulates the event source and the reply

messages of invoking removeParty coming from NCB into a single event. Refer to diagram

C.4 in Appendix C and class and Appendix E for class interface.

UCMExceptionHandler (Control Object): This class handles the possible exceptions

resulting in the runtime of the script interpretation process. Currently, the exception

resolution includes printing out the context information of the exception, and in the future, it

might include exception recovery or other complicated exception resolution mechanisms. The

UCMExceptionHandler can now handle the following exceptions:

MacroNotFoundException, IllegalArgumentException, PartyNotFoundException,

NoSessionException, DataNotFoundException, InvalidScriptException. Refer to diagram C.5

in Appendix C and class and Appendix E for class interface for classes and OCL statements.

MacroNotFoundException: This class defines the exception thrown by the macro loader

when the macro is not found in the local repository. Refer to diagram C.5 in Appendix C and

class and Appendix E for class interface.

IllegalArgumentException: This class defines the exception thrown by the macro

Interpreter when the macro has an unexpected argument passed to it. Refer to diagram C.5 in

Appendix C and class and Appendix E for class interface.

PartyNotFoundException: This class defines the exception thrown by the UCM Interpreter

when it is trying to remove a party that is not in the current connection. Refer to diagram C.5

in Appendix C and class and Appendix E for class interface.

NoSessionException: This class defines the exception thrown by the UCM Interpreter when

it is trying to add participants or send data in the connection that has no corresponding

session in the NCB layer. Refer to diagram C.5 in Appendix C and class and Appendix E for

class interface.

DataNotFoundException: This class defines the exception thrown by the UCM Interpreter

when it is trying to send data that could not be found locally or on the network. Refer to

diagram C.5 in Appendix C and class and Appendix E for class interface.

 50

InvalidScriptException: This class defines the exception thrown by the UCM Interpreter

when it is trying to pass the string received from Synthesis Engine. Refer to diagram C.5 in

Appendix C and class and Appendix E for class interface.

 51

7. Testing Process

In this chapter the different testing methods will be introduced. An example of each will be

presented, starting with the System test, in which the system is tested as a whole based on the

Use Cases. The Subsystem Test will focus on one specific subsystem and make sure it

behaves according to the specifications. Last, the Unit Tests for one specific class will be

presented. They will ensure the correctness of the code.

7.1 System Test

The System tests described below were developed in an attempt to test different combinations

of events and function calls that would ensure that all classes were called upon. The System

Tests were developed to be executed by the UCM in the same manner that the macros are

executed. The source code for the System Tests are stored in the Repository and is executed

dynamically, exactly like a real UCM scenario.

Identifier: UCM_T_1
Owner/Creator: Raidel Batista
Version: V1
Name: Test Login
Requirement ID: UCM_1_Login
Purpose: The purpose of this test case is to test the Login Use Case
Dependencies: None
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB
must have been attached to the UCM_Manager.

Finalization: If the log in fails the application must throw a LoginException which
should be caught by the exception handler and triggered as an event by
the EventHandler.

Actions: Try to login a user to the NCB, retrieve the user’s schema and create a
user profile.

Input data: Login control script containing the username = ‘a’ and password =
‘password123’.

Expected results: The application will notify the Synthesis Engine with a
UserProfileCreatedEvent passing the profile of the user.

 52

Identifier: UCM_T_02

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Create Connection

Requirement ID: UCM_03_CreateConnection

Purpose: The purpose of this test case is to test the Create Connection Use Case

Dependencies: UCM_T_01
Environment/
Configuration:

None

Initialization: The different layers of the system, SE, UCM and NCB should start up and
UCM is ready to take in and executes control scripts

Finalization: If the connection is not created successfully, an exception should be
thrown by the lower layer NCB.

Actions: The system will pass down a control script requesting to log in and create
connections

Input data: The control scripts from SE contain the login request and the
createConnections request, the login macro includes the user name and
password and the createConnections macro includes connection id, as
follows:
"login (\"a\",\"password123\")\n"
"createConnections (\"c1\")\n"

Expected results: The user is successfully logged in and the connection should be created
by the lower layer, indicated by events notifying the successful creation of
the connection ConnectionCreatedReply_Event and
UserProfileCreatedEvent

Identifier: UCM_T_03

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants with Settings

Requirement ID: UCM_T_03

Purpose: The purpose of this test case is to test the Add Participant Use Case using

the creation of a new connection.

 53

Dependencies: Login and CreateConnection

Environment/
Configuration:

None

Initialization: The user “a” is logged in and a connection “c1” is created.

Finalization: If this fails, a UCM_Exception is thrown.

Actions: Try to add a participant “b” after the user “a” is logged in and a
connection “c1” has been created.

Input data: Username “a”, password “password123”, connection id “c1” and the
username of the participant to be added “b”.

Expected results: A notification from NCB confirming the addition of a participant to the
connection.

Identifier: UCM_T_04

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants Without Settings

Requirement ID: UCM_T_04

Purpose: The purpose of this test case is to test the Add Participant Use Case but

using a non-existing connection.

Dependencies: Login

Environment/
Configuration:

None

Initialization: The user “a” is logged in.

Finalization: None

Actions: Try to add a participant “b” after the login of “a” is performed using a
non-existing connection “c1”.

Input data: Username “a”, password “password123”, connection id “c1” and the
username of the participant to be added “b”.

Expected results: A NoSessionException should be thrown notifying the non-existing
connection.

Identifier: UCM_T_5

 54

Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema with settings
Requirement ID: UCM_01, UCM_02, UCM_03
Purpose: The purpose of this test case is to test the Send Schema (with settings)

command
Dependencies: UCM_T_01, UCM_T_02, UCM_T_03
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB
must have been attached to the UCM_Manager.

Finalization: If the connection fails a NoSessionException will be returned and trigger
the appropriate event. If the data schema is unable to the sent by the ncb a
ControlSchemaNotSentException will be triggered. Similarly if the data
schema can not be sent a DataSchemaNotSentException will be triggered.

Actions: The system will call the login event from SE and will be logged in

The system has will have created a connection and a session IDs

The system will have added participants to the connection such as there
are at least two participants in the connection.

The NCB will send the control and data schema.

Input data: The Send Schema control script containing the connection id, the sender
id, a list of receivers, the control schema and the data schema.
"login (\"a\",\"password123\")\n");
"createConnections (\"c1\")\n"
"addParticipants(\"c1\",\"b,c\")\n"
"sendSchema(\"c1\",\"a\",\"b,c\",\"control_xcml\",\"data_xcml\")\n"

Expected results: The application will notify the Synthesis Engine with a
notifySendSchemaReply_Event passing the ‘true’ as the parameter.

Identifier: UCM_T_6
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema without settings
Requirement ID: None
Purpose: The purpose of this test case is to test the Send Schema (without settings)
Dependencies: None
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB
must have been attached to the UCM_Manager.

 55

Finalization: If the connection fails a NoSessionException will be returned and trigger
the appropriate event. If the data schema is unable to the sent by the ncb a
ControlSchemaNotSentException will be triggered. Similarly if the data
schema can not be sent a DataSchemaNotSentException will be triggered.

Actions: The NCB will send the control and data schema.

Input data: The Send Schema control script containing the connection id, the sender
id, a list of receievers, the control schema and the data schema.

"sendSchema(\"c1\",\"a\",\"b,c\",\"control_xcml\",\"data_xcml\")\n"

Expected results: SE is notified of a NoSessionException.

Identifier: UCM_T_07

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Enable Media Initiation with settings

Requirement ID: UCM_24_EnableMediaInitiator

Purpose: The purpose of this test case is to test the Enable Media Initiator use case

with settings
Dependencies: None
Environment/
Configuration:

None

Initialization: The system starts up and ready to take in and executes control scripts
Finalization: If problems occur within the intermediate stage, informative error

messages should be shown.
Actions: Since this is a behavior of an internal system component, we do not

consider the user actions.
Input data: The sequence of control scripts from the Synthesis Engine including the

login, createConnection and sendSchema,
 login macro contains the user name and password
 createConnection macro includes connection id
 addParticipants macro includes connection id and list of participants
 sendSchema macro includes connection id, sender id, list of

participants, control schema and data schema
 enableMediaInitiator macro includes connection id and media name

"login (\"a\",\"password123\")\n");
"createConnections (\"c1\")\n"
"addParticipants(\"c1\",\"b,c\")\n"
"sendSchema(\"c1\",\"a\",\"b,c\",\"control_xcml\",\"data_xcml\")\n"
"enableMediaInitiator(\"c1\",\"audio\")"

 56

Expected results: The media should be initiated from scratch, all the way from logged in,
create connection, add participants, send schema to enable media initiator.
Event:

 UserProfileCreatedEvent
 ConnectionCreatedReply_Event
 PartyAddedReply_Event
 SendSchemaReply_Event

Identifier: UCM_T_08

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Test Enable Media Initiation without settings

Requirement ID: UCM_24_EnableMediaInitiator

Purpose: The purpose of this test case is to test that an exception could be handled

and notified during the Enable Media Initiation use case

Dependencies: UCM_T_02, UCM_T_03, UCM_T_05

Environment/
Configuration:

None

Initialization: The different layers of the system, SE, UCM and NCB should start up and
UCM is ready to take in and executes control scripts

Finalization: If the media is not initialized successfully due to lack of connection,
NoSessionException should be returned.

Actions: The SE will pass down a control script requesting to enable media
initiator.
NCB will start to send the media stream to remote participants.

Input data: The enable Media Initiator control script contains the connection id, and
the name of the media, as follows:
“enableMediaInitiator(\"c1\",\"audio\")

Expected results: An NoSessionException should be thrown

 57

Identifier: UCM_T_09
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Decline Connection with settings.
Requirement ID: UCM_T_14
Purpose: The purpose of this test case is to make sure Decline Connection works as

expected.
Dependencies: None
Environment/
Configuration:

None

Initialization: The user logs in with username A, password P, creates a connection C1,
adds two participants, B and C, initiates audio.

Actions: Decline the connection C.

Input data: A = “a”

P = “password123”

C1 = “c1”

B = “b”

C = “c”

Expected results: The connection is declined.

Identifier: UCM_T_10

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove existing participant with settings

Requirement ID:
Purpose: The purpose of this test case is to test the removeParticipants event when

an active connection is present with the participant to be removed is
already added as an participant in the connection. This call may be used by
any active participant in the connection to remove any participant also in
the connection.

Dependencies: None

Environment/
Configuration:

The SE and NCB engines are reset at the beginning of the test case so they
are ready for the new settings.

Initialization: Users must be logged in and there must be an active connection present
with some active participants in the connection. The schema negotiation is

 58

completed between the initiator and the receivers and a particular media
(audio or video) is also enabled in the connection.

Finalization: If the removal of existing participants fail then it should throw an
exception.

Actions: Try to remove an existing participant in the connection.

Input data: 1. Login command invoked with parameters : username=’A’ and
password=’password123’.
2. CreateConnection command invoked with parameters :
connectionID=’c1’
3. AddParticipants command invoked with parameters :
connectionID=’c1’ and participantID=’b’ and ‘c’.
4. SendSchema command invoked with parameters : connectionID=’c1’,
initiatorID=’a’, participantID=’b’ and ‘c’, ControlSchema=’control_xcml’,
DataSchema=’data_schema’.
5. EnableMediaInitiator command invoked with parameters :
connectionID=’c1’, mediaType=’audio’
6. RemoveParticipant command invoked with parameters :
connectionID=’c1’, participantID=’b’.

Expected results: 1. NotifyLoginReply event is captured after successful login execution in
UCM.
2. ConnectionCreatedReply event is captured after successful creation of
connection in UCM.
3. PartyAddedReply event is captured after successful addition of
participants into the connection from UCM.
4. SendSchemaReply event is captured after successful operation of
sending control schema to the participants from UCM.
5. MediaInitiatorEnableReply event is captured after successful operation
of enabling media from UCM.
6. PartyRemovedReply event is captured after successful removal of
participant in the connection from UCM.
7. UserProfileCreated event is captured after successful creation of user
profile in SE.

Identifier: UCM_T_11

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove non-existing participant with settings

Requirement ID:
Purpose: The purpose of this test case is to test the exception condition to be thrown

when a non-existing participant is being tried to be removed from the
connection i.e. a removeParticipant event is called on a non-existing
participant.

 59

Dependencies: None

Environment/
Configuration:

The SE and NCB engines are reset at the beginning of the test case so they
are ready for the new settings.

Initialization: Users must be logged in and there must be an active connection present
with some active participants in the connection. The schema negotiation is
completed between the initiator and the receivers and a particular media
(audio or video) is also enabled in the connection.

Finalization: If the removal of the non-existing participant fails then it should throw an
exception.

Actions: Try to remove a non-existing participant from the connection.

Input data: 1. Login command invoked with parameters : username=’A’ and
password=’password123’.
2. CreateConnection command invoked with parameters :
connectionID=’c1’
3. AddParticipants command invoked with parameters :
connectionID=’c1’ and participantID=’b’ and ‘c’.
4. SendSchema command invoked with parameters : connectionID=’c1’,
initiatorID=’a’, participantID=’b’ and ‘c’, ControlSchema=’control_xcml’,
DataSchema=’data_xcml’.
5. EnableMediaInitiator command invoked with parameters :
connectionID=’c1’, mediaType=’audio’
6. RemoveParticipant command invoked with parameters :
connectionID=’c1’, participantID=’d’.

Expected results: 1. NotifyLoginReply event is captured after successful login execution in
UCM.
2. ConnectionCreatedReply event is captured after successful creation of
connection in UCM.
3. PartyAddedReply event is captured after successful addition of
participants into the connection from UCM.
4. SendSchemaReply event is captured after successful operation of
sending control schema to the participants from UCM.
5. MediaInitiatorEnableReply event is captured after successful operation
of enabling media from UCM.
6. PartyNotFound exception is thrown after unsuccessful removal of
participant in the connection from UCM.
7. UserProfileCreated event is captured after successful creation of user
profile in SE.

Identifier: UCM_T_13
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Logout with failed remove party.

 60

Purpose: The purpose of this test case is to make sure logout works when removing
a party fails.

Dependencies: None
Environment/
Configuration:

None

Initialization: The user logs in with username A, password P, creates a connection C1,
adds two participants, B and C, initiates audio.

Actions: Remove a non-existing participant and logout.

Input data: A = “a”

P = “password123”

C1 = “c1”

B = “b”

C = “c”

Expected results: A UserNotFound Exception is thrown. The system logs out successfully.

Identifier: UCM_T_14
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Logout with remove party.
Purpose: The purpose of this test case is to make sure logout works when removing

a party.
Dependencies: None
Environment/
Configuration:

None

Initialization: The user logs in with username A, password P, creates a connection C1,
adds two participants, B and C, initiates audio.

Actions: Remove participants and logout.

Input data: A = “a”

P = “password123”

C1 = “c1”

B = “b”

C = “c”

Expected results: The system logs out successfully.

 61

Identifier: UCM_T_15
Owner/Creator: Raidel Batista
Version: V1
Name: Test Login
Requirement ID: UCM_1_Login
Purpose: The purpose of this test case is to test the Login Use Case
Dependencies: None
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB
must have been attached to the UCM_Manager.

Finalization: If the log in fails the application must throw a LoginException which
should be caught by the exception handler and triggered as an event by
the EventHandler.

Actions: Try to login a user to the NCB, retrieve the user’s schema and create a
user profile.

Input data: Login control script containing the username = ‘frank hernandez’ and
password = ‘password567’.

Expected results: The application will notify the Synthesis Engine with a
UserProfileCreatedEvent passing the profile of the user.

Identifier: UCM_T_16

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Create Connection

Requirement ID: UCM_03_CreateConnection

Purpose: The purpose of this test case is to test the Create Connection Use Case

Dependencies: UCM_T_15
Environment/
Configuration:

None

Initialization: The different layers of the system, SE, UCM and NCB should start up and
UCM is ready to take in and executes control scripts

Finalization: If the connection is not created successfully, an exception should be
thrown by the lower layer NCB.

Actions: The system will pass down a control script requesting to log in and create
connections

Input data: The control scripts from SE contain the login request and the
createConnections request, the login macro includes the user name and
password and the createConnections macro includes connection id, as

 62

follows:
"login (\"frank hernandez\",\"password567\")\n"
"createConnections (\"d1\")\n"

Expected results: The user is successfully logged in and the connection should be created
by the lower layer, indicated by events notifying the successful creation of
the connection ConnectionCreatedReply_Event and
UserProfileCreatedEvent

Identifier: UCM_T_17

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants with Settings

Requirement ID: UCM_16

Purpose: The purpose of this test case is to test the Add Participant Use Case using

the creation of a new connection.

Dependencies: Login and CreateConnection

Environment/
Configuration:

None

Initialization: The user “frank hernandez” is logged in and a connection “d1” is created.

Finalization: If this fails, a UCM_Exception is thrown.

Actions: Try to add a participant “b” after the user “frank hernandez” is logged in
and a connection “d1” has been created.

Input data: Username “frank hernandez”, password “password567”, connection id “d1”
and the username of the participant to be added “x”.

Expected results: A notification from NCB confirming the addition of a participant to the
connection.

Identifier: UCM_T_18

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants Without Settings

Requirement ID: UCM_04

 63

Purpose: The purpose of this test case is to test the Add Participant Use Case but

using a non-existing connection.

Dependencies: Login

Environment/
Configuration:

None

Initialization: The user “frank hernandez” is logged in.

Finalization: None

Actions: Try to add a participant “x” after the login of “frank hernandez” is
performed using a non-existing connection “d1”.

Input data: Username “frank hernandez”, password “password567”, connection id “d1”
and the username of the participant to be added “x”.

Expected results: A NoSessionException should be thrown notifying the non-existing
connection.

Identifier: UCM_T_19
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema with settings
Requirement ID: UCM_01, UCM_02, UCM_03
Purpose: The purpose of this test case is to test the Send Schema (with settings)

command
Dependencies: UCM_T_15, UCM_T_16, UCM_T_17
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB must
have been attached to the UCM_Manager.

Finalization: If the connection fails a NoSessionException will be returned and trigger
the appropriate event. If the data schema is unable to the sent by the ncb a
ControlSchemaNotSentException will be triggered. Similarly if the data
schema can not be sent a DataSchemaNotSentException will be triggered.

Actions: The system will call the login event from SE and will be logged in

The system has will have created a connection and a session IDs

The system will have added participants to the connection such as there are
at least two participants in the connection.

The NCB will send the control and data schema.

 64

Input data: The Send Schema control script containing the connection id, the sender id,
a list of receievers, the control schema and the data schema.
"login (\"frank hernandez\",\"password567\")\n");
"createConnections (\"d1\")\n"
"addParticipants(\"d1\",\"x,y\")\n"
"sendSchema(\"c1\",\"frank
hernandez\",\"x,y\",\"control_xcml\",\"data_xcml\")\n"

Expected results: The application will notify the Synthesis Engine with a
notifySendSchemaReply_Event passing the ‘true’ as the parameter.

Identifier: UCM_T_20
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema without settings
Requirement ID: None
Purpose: The purpose of this test case is to test the Send Schema (without settings)
Dependencies: None
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB must
have been attached to the UCM_Manager.

Finalization: If the connection fails a NoSessionException will be returned and trigger
the appropriate event. If the data schema is unable to the sent by the ncb a
ControlSchemaNotSentException will be triggered. Similarly if the data
schema can not be sent a DataSchemaNotSentException will be triggered.

Actions: The NCB will send the control and data schema.

Input data: The Send Schema control script containing the connection id, the sender id,
a list of receievers, the control schema and the data schema.

"sendSchema(\"d1\",\"frank
hernandez\",\"x,y\",\"control_xcml\",\"data_xcml\")\n"

Expected results: SE is notified of a NoSessionException.

Identifier: UCM_T_21

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Enable Media Initiation with settings

Requirement ID: UCM_24_EnableMediaInitiator

 65

Purpose: The purpose of this test case is to test the Enable Media Initiator use case

with settings
Dependencies: None
Environment/
Configuration:

None

Initialization: The system starts up and ready to take in and executes control scripts
Finalization: If problems occur within the intermediate stage, informative error messages

should be shown.
Actions: Since this is a behavior of an internal system component, we do not

consider the user actions.
Input data: The sequence of control scripts from the Synthesis Engine including the

login, createConnection and sendSchema,
 login macro contains the user name and password
 createConnection macro includes connection id
 addParticipants macro includes connection id and list of participants
 sendSchema macro includes connection id, sender id, list of

participants, control schema and data schema
 enableMediaInitiator macro includes connection id and media name

"login (\"frank hernandez\",\"password567\")\n");
"createConnections (\"d1\")\n"
"addParticipants(\"d1\",\"x,y\")\n"
"sendSchema(\"d1\",\"frank
hernandez\",\"x,y\",\"control_xcml\",\"data_xcml\")\n"
"enableMediaInitiator(\"d1\",\"audio\")"

Expected results: The media should be initiated from scratch, all the way from logged in,
create connection, add participants, send schema to enable media initiator.
Event:

 UserProfileCreatedEvent
 ConnectionCreatedReply_Event
 PartyAddedReply_Event
 SendSchemaReply_Event

Identifier: UCM_T_22

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Test Enable Media Initiation without settings

Requirement ID: UCM_24_EnableMediaInitiator

Purpose: The purpose of this test case is to test that an exception could be handled

and notified during the Enable Media Initiation use case

Dependencies: UCM_T_16, UCM_T_17, UCM_T_19

 66

Environment/
Configuration:

None

Initialization: The different layers of the system, SE, UCM and NCB should start up and
UCM is ready to take in and executes control scripts

Finalization: If the media is not initialized successfully due to lack of connection,
NoSessionException should be returned.

Actions: The SE will pass down a control script requesting to enable media initiator.
NCB will start to send the media stream to remote participants.

Input data: The enable Media Initiator control script contains the connection id, and the
name of the media, as follows:
“enableMediaInitiator(\"d1\",\"audio\")

Expected results: An NoSessionException should be thrown

Identifier: UCM_T_23

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove existing participant with settings

Requirement ID:
Purpose: The purpose of this test case is to test the removeParticipants event when an

active connection is present with the participant to be removed is already
added as an participant in the connection. This call may be used by any
active participant in the connection to remove any participant also in the
connection.

Dependencies: None

Environment/
Configuration:

The SE and NCB engines are reset at the beginning of the test case so they
are ready for the new settings.

Initialization: Users must be logged in and there must be an active connection present with
some active participants in the connection. The schema negotiation is
completed between the initiator and the receivers and a particular media
(audio or video) is also enabled in the connection.

Finalization: If the removal of existing participants fail then it should throw an exception.

Actions: Try to remove an existing participant in the connection.

Input data: 1. Login command invoked with parameters : username=’frank hernandez’
and password=’password567’.

 67

2. CreateConnection command invoked with parameters :
connectionID=’d1’
3. AddParticipants command invoked with parameters : connectionID=’d1’
and participantID=’x’ and ‘y’.
4. SendSchema command invoked with parameters : connectionID=’d1’,
initiatorID=’a’, participantID=’x’ and ‘y’, ControlSchema=’control_xcml’,
DataSchema=’data_schema’.
5. EnableMediaInitiator command invoked with parameters :
connectionID=’d1’, mediaType=’audio’
6. RemoveParticipant command invoked with parameters :
connectionID=’d1’, participantID=’x’.

Expected results: 1. NotifyLoginReply event is captured after successful login execution in
UCM.
2. ConnectionCreatedReply event is captured after successful creation of
connection in UCM.
3. PartyAddedReply event is captured after successful addition of
participants into the connection from UCM.
4. SendSchemaReply event is captured after successful operation of sending
control schema to the participants from UCM.
5. MediaInitiatorEnableReply event is captured after successful operation of
enabling media from UCM.
6. PartyRemovedReply event is captured after successful removal of
participant in the connection from UCM.
7. UserProfileCreated event is captured after successful creation of user
profile in SE.

Identifier: UCM_T_24

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove non-existing participant with settings

Requirement ID:
Purpose: The purpose of this test case is to test the exception condition to be thrown

when a non-existing participant is being tried to be removed from the
connection i.e. a removeParticipant event is called on a non-existing
participant.

Dependencies: None

Environment/
Configuration:

The SE and NCB engines are reset at the beginning of the test case so they
are ready for the new settings.

Initialization: Users must be logged in and there must be an active connection present with
some active participants in the connection. The schema negotiation is
completed between the initiator and the receivers and a particular media
(audio or video) is also enabled in the connection.

 68

Finalization: If the removal of the non-existing participant fails then it should throw an

exception.

Actions: Try to remove a non-existing participant from the connection.

Input data: 1. Login command invoked with parameters : username=’frank hernandez’
and password=’password567’.
2. CreateConnection command invoked with parameters :
connectionID=’d1’
3. AddParticipants command invoked with parameters : connectionID=’d1’
and participantID=’x’ and ‘y’.
4. SendSchema command invoked with parameters : connectionID=’d1’,
initiatorID=’a’, participantID=’x’ and ‘y’, ControlSchema=’control_xcml’,
DataSchema=’data_xcml’.
5. EnableMediaInitiator command invoked with parameters :
connectionID=’d1’, mediaType=’audio’
6. RemoveParticipant command invoked with parameters :
connectionID=’d1’, participantID=’z’.

Expected results: 1. NotifyLoginReply event is captured after successful login execution in
UCM.
2. ConnectionCreatedReply event is captured after successful creation of
connection in UCM.
3. PartyAddedReply event is captured after successful addition of
participants into the connection from UCM.
4. SendSchemaReply event is captured after successful operation of sending
control schema to the participants from UCM.
5. MediaInitiatorEnableReply event is captured after successful operation of
enabling media from UCM.
6. PartyNotFound exception is thrown after unsuccessful removal of
participant in the connection from UCM.
7. UserProfileCreated event is captured after successful creation of user
profile in SE.

7.2 Subsystem Test

The Subsystem Test presented below tests the Repository Subsystem. This test ensures that

all classes in the Repository package are called upon. It starts by initializing the repository

and making sure that different database and file system types can be used. It then tests the

insertion and retrieval of data into the repository. Error handling is also tested and misuse is

ensured to be harmless to the system.

Identifier: UCM_T_12

Owner/Creator: Marylurdys Hernandez

Version: V1

 69

Name: Test Repository Subsystem Interface

Requirement ID: UCM_T_12

Purpose: The purpose of this test case is to test the interface provided by the
Repository Subsystem in terms of returning the correct Macro object that
other subsystem request.

Dependencies: None

Environment/
Configuration:

None

Initialization: Create the UCM_R_Facade

Finalization: If this fails, one or more of these exceptions are thrown:
SourceDBLoader, MacroLoader, or UCM_R_Facade.

Actions: Request to the UCM_R_Facade to load the Macro object for the “login”
command

Input data: The name of the macro to be loaded, “login”

Expected results: Each parameter stored in the repository for the macro “login”

7.3 Unit Test

The Unit Tests were developed for the Script class. The correctness of the code is tested by

creating a sample Script, adding a number of calls with different return types and parameter

types and names, and making sure that they are stored correctly and can be retrieved

according to the specifications. If all tests are successful, the Unit Test is also successful.

Identifier: UCM_T_25
Owner/Creator: Frank Hernandez
Version: V1
Name: Unit Test – UCM_M_Façade
Requirement ID: UCM_1_Login
Purpose: The purpose of this test case is to test the Login Use Case
Dependencies: None
Environment/
Configuration:

None

Initialization: All three layers NCB, SE, and UCM must be initialized. SE and NCB must
have been attached to the UCM_Manager.

 70

Finalization: If the log in fails the application must throw a LoginException which
should be caught by the exception handler and triggered as an event by the
EventHandler.

Actions: Try to login a user to the NCB, retrieve the user’s schema and create a user
profile.

Input data: Login control script containing the username = ‘a’ and password = ‘*****’.

Expected results: The application will notify the Synthesis Engine with a
UserProfileCreatedEvent passing the profile of the user.

Identifier: UCM_T_12

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Unit Test - UCM_R_Facade

Requirement ID: None

Purpose: The purpose of this test case is to test the interface provided by the

Repository Subsystem in terms of returning the correct Macro object that
other subsystem request.

Dependencies: None

Environment/
Configuration:

None

Initialization: Create the UCM_R_Facade

Finalization: If this fails, one or more of these exceptions are thrown:
SourceDBLoader, MacroLoader, or UCM_R_Facade.

Actions: Request to the UCM_R_Facade to load the Macro object for the
“createConnection” command

Input data: The name of the macro to be loaded, “createConnection”

Expected results: Each parameter stored in the repository for the macro “createConnection”

7.4 Evaluation of Tests

While it is impossible to test for all combinations of user actions and control scripts, the tests

tried to cover the most common subset of both. The tests try to cover the use cases that were

 71

deemed critical and more frequent. In the end, testing the classes that are called by these

scenarios and use cases will ensure that the coverage is at least satisfactory. Obscure

combinations of control scripts and user actions might not have been tested, but due to time

and scope of this project, the system was sufficiently tested.

Identifier: UCM_T_1
Owner/Creator: Raidel Batista
Version: V1
Name: Test Login

Actual results: The application will notify the Synthesis Engine with a
UserProfileCreatedEvent passing the profile of the user.

PASS/FAIL: PASS.

Identifier: UCM_T_02

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Create Connection

Actual result: The system notifies the Synthesis Engine about the successful login and

creation of connection via two events:
ConnectionCreatedReply_Event and
UserProfileCreatedEvent

PASS/FAIL: PASS.

Identifier: UCM_T_03

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants with Settings

Actual results: “A PartyAddedReply_Event was detected by UCM_Manager!”

PASS/FAIL: PASS.

Identifier: UCM_T_04

Owner/Creator: Marylurdys Hernandez

Version: V1

 72

Name: Test Add Participants Without Settings

Actual results: “SE Received NoSessionException notification for sID: null”. The session

ID (sID) is null since the connection “c1” does not exist.
PASS/FAIL: PASS.

Identifier: UCM_T_5
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema with settings
Actual Result The application will notify the Synthesis Engine with a

notifySendSchemaReply_Event passing the ‘true’ as the parameter

PASS/FAIL: PASS.

Identifier: UCM_T_6
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema without settings
Actual results: SE is notified of a NoSessionException.

PASS/FAIL: PASS.

Identifier: UCM_T_07

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Enable Media Initiation with settings

Actual result: The system notified Synthesis Engine about the successful login, creation of

connection, adding participants, sent schema and enabled media via the
following events:

 UserProfileCreatedEvent
 ConnectionCreatedReply_Event
 PartyAddedReply_Event
 SendSchemaReply_Event
 MediaInitiatorEnableReply_Event

PASS/FAIL: PASS.

Identifier: UCM_T_08

Owner/Creator: Guangqiang Zhao
Version: V1
Name: Test Enable Media Initiation without settings

 73

Actual result: An UCM_Exception is thrown: NoSessionException

PASS/FAIL: PASS.

Identifier: UCM_T_09
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Decline Connection with settings.
Actual results: The connection is declined.

PASS/FAIL: PASS.

Identifier: UCM_T_10

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove existing participant with settings

Actual result: 1. NotifyLoginReply_Event successful.

2. ConnectionCreatedReply_Event successful.
3. PartyAddedReply _Event successful.
4. SendSchemaReply_Event successful.
5. MediaInitiatorEnableReply_Event successful.
6. PartyRemovedReply_Event successful.
7. UserProfileCreatedEvent successful.

PASS/FAIL: PASS.

Identifier: UCM_T_11

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove non-existing participant with settings

Actual result: 1. NotifyLoginReply_Event successful.

2. ConnectionCreatedReply_Event successful.
3. PartyAddedReply _Event successful.
4. SendSchemaReply_Event successful.
5. MediaInitiatorEnableReply_Event successful.
6. PartyNotFoundException successful.
7. UserProfileCreatedEvent successful.

PASS/FAIL: PASS.

 74

Identifier: UCM_T_12

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Repository Subsystem

Actual results: Success! The information stored in the repository for the “login” macro is

returned, including name, parameters type list, parameters name list, the
thrown exceptions list and the macro script.

PASS/FAIL: PASS.

Identifier: UCM_T_13
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Logout with failed remove party.
Actual results: A UserNotFound Exception is thrown. The system logs out successfully.

PASS/FAIL: PASS.

Identifier: UCM_T_14
Owner/Creator: Eduardo Monteiro
Version: V1
Name: Logout with remove party.
Actual results: The system logs out successfully.

PASS/FAIL: PASS.

Identifier: UCM_T_15
Owner/Creator: Raidel Batista
Version: V1
Name: Test Login
Actual results: The application will notify the Synthesis Engine with a

UserProfileCreatedEvent passing the profile of the user.

PASS/FAIL: PASS.

Identifier: UCM_T_16

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Create Connection

 75

Actual result: The system notifies the Synthesis Engine about the successful login and
creation of connection via two events:
ConnectionCreatedReply_Event and
UserProfileCreatedEvent

PASS/FAIL: PASS.

Identifier: UCM_T_17

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants with Settings

Actual results: “A PartyAddedReply_Event was detected by UCM_Manager!”

PASS/FAIL: PASS.

Identifier: UCM_T_18

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Test Add Participants Without Settings

Actual results: “SE Received NoSessionException notification for sID: null”. The session

ID (sID) is null since the connection “d1” does not exist.
PASS/FAIL: PASS.

Identifier: UCM_T_19
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema with settings
Actual Result The application will notify the Synthesis Engine with a

notifySendSchemaReply_Event passing the ‘true’ as the parameter

PASS/FAIL: PASS.

Identifier: UCM_T_20
Owner/Creator: Raidel Batista
Version: V1
Name: Test send schema without settings
Actual results: SE is notified of a NoSessionException.

PASS/FAIL: PASS.

 76

Identifier: UCM_T_21

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Enable Media Initiation with settings

Actual result: The system notified Synthesis Engine about the successful login, creation of
connection, adding participants, sent schema and enabled media via the
following events:

 UserProfileCreatedEvent
 ConnectionCreatedReply_Event
 PartyAddedReply_Event
 SendSchemaReply_Event
 MediaInitiatorEnableReply_Event

PASS/FAIL: PASS.

Identifier: UCM_T_22

Owner/Creator: Guangqiang Zhao

Version: V1

Name: Test Enable Media Initiation without settings

Actual result: An UCM_Exception is thrown: NoSessionException

PASS/FAIL: PASS.

Identifier: UCM_T_23

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove existing participant with settings

Actual result: 1. NotifyLoginReply_Event successful.

2. ConnectionCreatedReply_Event successful.
3. PartyAddedReply _Event successful.
4. SendSchemaReply_Event successful.
5. MediaInitiatorEnableReply_Event successful.
6. PartyRemovedReply_Event successful.
7. UserProfileCreatedEvent successful.

PASS/FAIL: PASS.

 77

Identifier: UCM_T_24

Owner/Creator: Abhishek Bhattacharya

Version: V1

Name: Test to remove non-existing participant with settings

Actual result: 1. NotifyLoginReply_Event successful.

2. ConnectionCreatedReply_Event successful.
3. PartyAddedReply _Event successful.
4. SendSchemaReply_Event successful.
5. MediaInitiatorEnableReply_Event successful.
6. PartyNotFoundException successful.
7. UserProfileCreatedEvent successful.

PASS/FAIL: PASS.

Identifier: UCM_T_25
Owner/Creator: Frank Hernandez
Version: V1
Name: Unit Test – UCM_M_Façade
Actual results: EXECUTING MACRO: login .

NCB Login called with userName:"a" and Password:"*****".
NCB retrieve schema called with userName:"a" and
Password:"*****".
NCB createUserProfile called.
Not a UCM_Event Redirecting to SE!
UserProfileCreatedEvent is detected by SynthesisEngine!
UserProfile Created!

PASS/FAIL: PASS.

Identifier: UCM_T_26

Owner/Creator: Marylurdys Hernandez

Version: V1

Name: Unit Test - UCM_R_Facade

Actual results: Macro: createConnections

Return Type:
cvm.ucm.handlers.exception.NoSessionException
Parameters Type List: [java.lang.String]
Parameters Name List: [connectionID]
Script: import static java.lang.String; import static
cvm.ucm.handlers.exception.NoSessionException;
NoSessionException exception = null; String sID =

 78

"s1"; try{ ncb.createSession(sID);
if(!ncb.isCreatedSession()){ exception = new
NoSessionException(sID);throw exception;}
ncb.mapConnToSession(connectionID, sID);
}catch(NoSessionException e){ return e;}
ucmNotifier.notifyConnectionCreatedReply_Event(true);
return exception;
Exception List:
[cvm.ucm.handlers.exception.NoSessionException]

PASS/FAIL: PASS.

 79

8. Glossary

Class Diagram – A model representing the different classes within a software system and

how they interact with each other.

Component – A physical and replaceable part of a system that conforms to and provides the

realization of a set of interfaces.

Model – an abstract representation of a system that enables us to answer questions about the

system.

Post condition – A predicate that must be true after an operation is invoked.

Precondition – A predicate that must be true before an operation is invoked.

Sequence Diagram – A model representing the different objects and/or subsystems of a

software project and how they relate to each other during different operations for a given use

case.

Unified Modeling Language (UML) – A standard set of notations for representing models.

Use Case – A general sequence of events that defines all possible actions between one or

many actors and the system for a given piece of functionality.

UCM – Name of this system – User-Centric Communication Middleware.

NCB – Network Communication Broker.

SE – Name of the overlaying layer that sits atop UCM, Synthesis Engine.

CVM – Communication Virtual Machine.

RQ – Requirements.

PD – Product Design.

DD – Detailed Design.

CT – Cost & Unit Test.

IT – Integration Test.

 80

9. Signature Page

Batista, Raidel

Hernandez, Frank

Monteiro, Eduardo

Bhattacharya, Abhishek

Hernandez, Marylurdys

Zhao, Guangqiang

 81

10. Appendix
10.1 Appendix A – Project Schedule.

 82

Fig A.2 Large Project Schedule
Description: This is the project schedule for the entire project. This project will cover from start to end of the semester.

 83

10.2 Appendix B – Use Case with Nonfunctional Requirements

Use Case Login

*Use Case ID: UCM_01 – Login.
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine with the control
command Login(“a”, “xxxxxxx”).

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. There is an active Internet connection.

• Description:
Trigger: Use case begins when the Synthesis Engine requests a login through the
control script.
The system responds by:

1. UCM obtains the username and password from the control script.
2. UCM calls the Login function passing the username and password as

parameters.
3. UCM receives an answer from the NCB stating if the Login was

successful or not.
• Relevant requirements: none.
• Post-conditions: The user is logged in and ready to create connections.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Username or password is incorrect.
2. There is no Internet connection.

Concurrent Uses: None
*Related Use Cases: None.
--

Decision Support
*Frequency: This use case will be performed at least once per application use.
*Criticality: This is required for all transactions.
*Risk: Low. This use case is simple to be implemented.

 84

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1 week of use.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Eduardo Monteiro
*Initiation date: 09/09/2007
*Date last modified: 09/22/2007

Use Case Logout

*Use Case ID: UCM_02 – Logout.
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing the
Logout(“a”) command.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. There exists a session with a logged in user.
• Description:

Trigger: Use case begins when the Synthesis Engine requests a logout through
the control script.
The system responds by:

1. UCM calls the Logout function.
2. UCM receives an answer from the NCB stating if the Logout was successful or

not.
• Relevant requirements: none.

 85

• Post-conditions: The user is logged out.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. There is no session.
2. There is no Internet connection.

Concurrent Uses: None
*Related Use Cases: None.
--

Decision Support
*Frequency: This use case will be performed at least once per application use.
*Criticality: This is not required. The system can be shutdown without a logout
command.
*Risk: Low. This use case is simple to be implemented.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1 week of use.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Eduardo Monteiro
*Initiation date: 09/09/2007
*Date last modified: 09/22/2007

 86

Use Case Create Connection

*Use Case ID: UCM_03 – Create Connection.
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing the
createConnection(“c1”) command.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. There exists a session with a logged in user.

• Description:
Trigger: Use case begins when the Synthesis Engine requests a Create
Connection through the control script.
The system responds by:

1. UCM calls the Create Connection function.
2. UCM receives an answer from the NCB, stating if the Create Connection

command was successful or not, as well as a session ID.
• Relevant requirements: none.
• Post-conditions: A connection is created.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. The user is not logged in.
2. There is no Internet connection.

Concurrent Uses: None
*Related Use Cases: None.
--

Decision Support
*Frequency: This use case will be performed at least once per application use.
*Criticality: This is an important use case. Without it, no communications can be
created.
*Risk: Low. This use case is simple to be implemented.

Constraints:
• Usability: System operation not handled directly by the user.

 87

• Reliability: Mean time to failure – 1% failure for every 1 week of use.
• Performance: Request should be handled in less than one (1) second, if no other

request exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in java.

Modification History: - v1.10
*Owner: Eduardo Monteiro
*Initiation date: 09/09/2007
*Date last modified: 09/22/2007

Use Case Decline Connection

*Use Case ID: UCM_04 – Decline Connection.
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing the
declineConnection(“c1”, “b”, “a”) command.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. There exists a session with a logged in user.

• Description:
Trigger: Use case begins when the Synthesis Engine requests a Decline
Connection through the control script.
The system responds by:

1. UCM calls the Decline Connection function.
2. UCM receives an answer from the NCB, stating if the Decline Connection

command was successful or not.
• Relevant requirements: none.
• Post-conditions: A connection is declined.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. The user is not logged in.

 88

2. There is no Internet connection.
Concurrent Uses: None
*Related Use Cases: None.
--

Decision Support
*Frequency: This use case will be performed at least once per application use.
*Criticality: This is an important use case. Without it, no communications can be
declined.
*Risk: Low. This use case is simple to be implemented.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1 week of use.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Eduardo Monteiro
*Initiation date: 09/09/2007
*Date last modified: 09/22/2007

Use Case Add Participant

*Use Case ID: UCM_05 – Add Participant
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to add a participant to the active connection. The control script contains information to
add participant “b” to the current existing connection.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

 89

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in.
2. The system has successful created a connection.
• Description:

Trigger: Use case begins when the Synthesis Engine requests the addition of a
participant via a control script.
The system responds by:

1. UCM obtains the session ID from the connection.
2. UCM then adds the participants from into NCB’s party list.
3. Use case ends when every participant has been added.

• Relevant requirements: none.
• Post-conditions: The number in the NCB participant list has increased by one.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. No session can be found.
2. The participant could not be added.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in, UCM_03 – Create Connection.
--

Decision Support
*Frequency: This use case will be performed at least once per application use. This will
occur every time that a request from the Synthesis Engine is made to add one or more
participants to the connection. Expected times of executions 100 uses per session.
*Criticality: High. This is required for anytime that the system requests the addition of
participants.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.

• Reliability: Mean time to failure – 1% failure for every 100 executions.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.

 90

• Implementation: Must be implemented in Java.
--
Modification History: - v1.10
*Owner: Frank Hernandez
*Initiation date: 09/04/2007
*Date last modified: 09/22/2007

Use Case Remove Participant

*Use Case ID: UCM_06 – Remove Participant
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to remove a participant to the active connection. A script containing the command to
remove the participant “b” is passed by SE.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in.
2. The system has successfully created a connection.
3. The system has successfully added a participant.
• Description:

Trigger: Use case begins when the Synthesis Engine request the removal of a
participant via a control script.
The system responds by:

1. UCM obtains the session ID from the connection.
2. Checks that the participant is in NCB’s party list.
3. UCM then removes the participant from the list into NCB’s party list.
4. Use case ends when every participant has been removed.

• Relevant requirements: none.
• Post-conditions: The number in the NCB participant list has decreased by one.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

 91

1. No session can be found.
2. The participant could not be added.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in, UCM_03 – Create Connection, UCM_05 – Add
Participant.
--

Decision Support
*Frequency: This use case will be performed at least once per application use. This will
occur every time that a request from the Synthesis Engine is made to remove one or more
participants to the connection. Expected times of executions 100 uses per session.
*Criticality: High. This is required for anytime that the system requests the removal of
participants.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1000 executions.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Frank Hernandez
*Initiation date: 09/04/2007
*Date last modified: 09/22/2007

Use Case Send Media

*Use Case ID: UCM_07 – Send Media
Use Case Level: Functional sub-use case.

 92

*Scenario: A control script is received from the Synthesis Engine containing a command
to send a medium to participant B in the connection. The command is passed with
parameters of media “audio”.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in.
2. The system has successfully created a connection.
3. The system has successfully added a participant.
4. The system has successfully enabled the media initiator.
• Description:

Trigger: Use case begins when the Synthesis Engine requests the sending of a
medium via a control script.
The system responds by:

1. UCM finds the participants using the connection ID.
2. UCM sends the specified medium to every participant in NCB’s party list.
3. Use case ends when media has been sent.

• Relevant requirements: none.
• Post-conditions: The new medium has been sent to all participants.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. No session can be found.
2. No participant could be found.
3. No medium could be found.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in, UCM_03 – Create Connection, UCM_05 – Add
Participant, UCM_24 – Enable Media Initiator.
--

Decision Support
*Frequency: This use case will be performed at least once per application use. This will
occur every time that a request from the Synthesis Engine is made to send a medium.
Expected times of executions 100 uses per session.
*Criticality: High. This is required for anytime that the system requests the sending of a
medium.

 93

*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1000 executions use.
• Performance: Request should be handled in less than one (1) second, if no other

requests exist.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Frank Hernandez
*Initiation date: 09/04/2007
*Date last modified: 09/22/2007

Use Case Send Form

*Use Case ID: UCM_08 – Send Form
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to send a form to participant “b” in the connection “c1”.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in.
2. The system has successfully created a connection.
3. The system has successfully added a participant.
• Description:

Trigger: Use case begins when the Synthesis Engine requests the sending of a
form via a control script.
The system responds by:

1. UCM finds the participants using the connection ID.

 94

2. UCM sends the specified form to every participant in NCB’s party list.
3. Use case ends when form has been sent.

• Relevant requirements: none.
• Post-conditions: The new form has been sent to all participants.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. No session can be found.
2. No participant could be found.
3. No form could be found.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in, UCM_03 – Create Connection, UCM_05 – Add
Participant.
--

Decision Support
*Frequency: This use case will be performed at least once per application use. This will
occur every time that a request from the Synthesis Engine is made to send a form.
Expected to be executed 100 per session.
*Criticality: This is required for anytime that the system requests the sending of a form.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 1% failure for every 1000 executions.

• Performance: Request should be handled in less than one (1) second, if no other
requests exist.

• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Frank Hernandez
*Initiation date: 09/04/2007
*Date last modified: 09/22/2007

 95

Use Case Create 2-way Audio

*Use Case ID: UCM_9 – Create 2-way Audio
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to create 2-way audio with participant John Doe for the sessionID “ses!23” , that is, a
connection between sender side and receiver side.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).
Pre-conditions:
1. The script received from the interpreter is in the legal format.
2. The macro for the script is found in the repository.
3. There are no network failures in the communication.

• Description:
Trigger: Use case begins when the Synthesis Engine requests the creation of 2-
way audio between two users via a control script.
The system responds by:

1. UCM handles the login command in the control script for the sender.
(See Use Case UCM_01 – Log in)

2. UCM handles the login command in the control script for the receiver.
(See Use Case UCM_01 – Log in)

3. UCM handles the create connections command in the control script for
the sender. (See Use Case UCM_03 – Create Connection)

4. UCM handles the add participants command in the control script for the
sender. (See Use Case UCM_05 – Add Participant)

5. UCM handles the send schema command in the control script to for the
sender. (See Use Case UCM_14 – Send Schema)

6. UCM handles the send schema command in the control script to for the
receiver. (See Use Case UCM_14 – Send Schema)

7. UCM handles the media initiator command in the control script for the
sender. (See Use Case UCM_16 – Enable Media Receiver)

8. UCM handles the media receiver command in the control script for the
receiver. (See Use Case UCM_24 – Enable Media Initiator)

 96

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The Event handler creates the particular event and is logged out.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to create an event by the Event handler.
2. Exception generated by the NCB after a network failure.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in , UCM_03 – Create Connection, UCM_05 –
Add Participant, UCM_14 – Send Schema, UCM_16 – Enable Media Receiver, UCM_24
– Enable Media Initiator
--

Decision Support
*Frequency: This use case will be performed every time when a user tries to create 2-
way audio.
*Criticality: This is required anytime that the system requests the creation of 2-way
audio. This is an important use case as without it there would be no 2-way audio
communication between two users.
*Risk: High. This use case relies on several other use cases.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 8% failure for every 24hrs use.
• Performance: Request should be handled in less than five (5) seconds, if no other

requests exist.
• Supportability: The commands must be properly handled by Event handler.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Raidel Batista
*Initiation date: 09/10/2007
*Date last modified: 09/22/2007

 97

Use Case Create Conference Audio

*Use Case ID: UCM_10 – Create Conference Audio
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to create conference audio with participants John Doe, Jane Doe and Mary Doe for the
sessionID “ses!23” , that is, a connection between sender side and receiver side.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).
Pre-conditions:
1. The script received from the interpreter is in the legal format.
2. The macro for the script is found in the repository.
3. There are no network failures in the communication.

• Description:
Trigger: Use case begins when the Synthesis Engine requests the creation of
conference audio between three users via a control script.
The system responds by:

1. UCM handles the login command in the control script for the sender.
(See Use Case UCM_01 – Log in)

2. UCM handles the login command in the control script for receiver one.
(See Use Case UCM_01 – Log in)

3. UCM handles the login command in the control script for receiver two.
(See Use Case UCM_01 – Log in)

4. UCM handles the create connections command in the control script for
the sender. (See Use Case UCM_03 – Create Connection)

5. UCM handles the add participants command in the control script for the
sender. (See Use Case UCM_05 – Add Participant)

6. UCM handles the send schema command in the control script to for the
sender. (See Use Case UCM_14 – Send Schema)

7. UCM handles the send schema command in the control script to for
receiver one. (See Use Case UCM_14 – Send Schema)

8. UCM handles the send schema command in the control script to for
receiver two. (See Use Case UCM_14 – Send Schema)

9. UCM handles the media initiator command in the control script for the
sender. (See Use Case UCM_16 – Enable Media Receiver)

 98

10. UCM handles the media receiver command in the control script for
receiver one. (See Use Case UCM_24 – Enable Media Initiator)

11. UCM handles the media receiver command in the control script for
receiver two. (See Use Case UCM_24 – Enable Media Initiator)

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The Event handler creates the particular event and is logged out.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to create an event by the Event handler.
2. Exception generated by the NCB after a network failure.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in , UCM_03 – Create Connection, UCM_05 –
Add Participant, UCM_14 – Send Schema, UCM_16 – Enable Media Receiver, UCM_24
– Enable Media Initiator
--

Decision Support
*Frequency: This use case will be performed every time when a user tries to create
conference audio at least 1 time per session.
*Criticality: This is required anytime that the system requests the creation of conference
audio. This is an important use case as without this there will be no conference audio
communication between three users.
*Risk: High. This use case relies on several other use cases.

Constraints:
• Usability: System operation not handled directly by the user.

• Reliability: Mean time to failure – 8% failure for every 24hrs use.
• Performance: Request should be handled in less than five (5) seconds, if no other

requests exist.
• Supportability: The commands must be properly handled by Event handler.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Raidel Batista

 99

*Initiation date: 09/10/2007
*Date last modified: 09/22/2007

Use Case Create 2-way Video

*Use Case ID: UCM_11 – Create 2-way Video
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to create 2-way video with participant John Doe for the sessionID “ses!23” , that is, a
connection between sender side and receiver side.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).
Pre-conditions:
1. The script received from the interpreter is in the legal format.
2. The macro for the script is found in the repository.
3. There are no network failures in the communication.

• Description:
Trigger: Use case begins when the Synthesis Engine requests the creation of 2-
way video between two users via a control script.
The system responds by:

1. UCM handles the login command in the control script for the sender.
(See Use Case UCM_01 – Log in)

2. UCM handles the login command in the control script for the receiver.
(See Use Case UCM_01 – Log in)

3. UCM handles the create connections command in the control script for
the sender. (See Use Case UCM_03 – Create Connection)

4. UCM handles the add participants command in the control script for the
sender. (See Use Case UCM_05 – Add Participant)

5. UCM handles the send schema command in the control script to for the
sender. (See Use Case UCM_14 – Send Schema)

6. UCM handles the send schema command in the control script to for the
receiver. (See Use Case UCM_14 – Send Schema)

7. UCM handles the media initiator command in the control script for the
sender. (See Use Case UCM_16 – Enable Media Receiver)

 100

8. UCM handles the media receiver command in the control script for the
receiver. (See Use Case UCM_24 – Enable Media Initiator)

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The Event handler creates the particular event and is logged out.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to create an event by the Event handler.
2. Exception generated by the NCB after a network failure.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in , UCM_03 – Create Connection, UCM_05 –
Add Participant, UCM_14 – Send Schema, UCM_16 – Enable Media Receiver, UCM_24
– Enable Media Initiator
--

Decision Support
*Frequency: This use case will be performed every time when a user tries to create 2-
way video, at least 1 per session.
*Criticality: This is required anytime that the system requests the creation of 2-way
video. This is an important use case as without this there will be no 2-way video
communication between two users.
*Risk: High. This use case relies on several other use cases.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 8% failure for every 24hrs use.
• Performance: Request should be handled in less than five (5) seconds, if no other

requests exist.
• Supportability: The commands must be properly handled by Event handler.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Raidel Batista
*Initiation date: 09/10/2007

 101

*Date last modified: 09/22/2007

Use Case Create Conference Video

*Use Case ID: UCM_12 – Create Conference Video
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to create conference video with participants John Doe, Jane Doe and Mary Doe for the
sessionID “ses!23” , that is, a connection between sender side and receiver side.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).
Pre-conditions:
1. The script received from the interpreter is in the legal format.
2. The macro for the script is found in the repository.
3. There are no network failures in the communication.

• Description:
Trigger: Use case begins when the Synthesis Engine requests the creation of
conference video between three users via a control script.
The system responds by:

1. UCM handles the login command in the control script for the sender.
(See Use Case UCM_01 – Log in)

2. UCM handles the login command in the control script for receiver one.
(See Use Case UCM_01 – Log in)

3. UCM handles the login command in the control script for receiver two.
(See Use Case UCM_01 – Log in)

4. UCM handles the create connections command in the control script for
the sender. (See Use Case UCM_03 – Create Connection)

5. UCM handles the add participants command in the control script for the
sender. (See Use Case UCM_05 – Add Participant)

6. UCM handles the send schema command in the control script to for the
sender. (See Use Case UCM_14 – Send Schema)

7. UCM handles the send schema command in the control script to for
receiver one. (See Use Case UCM_14 – Send Schema)

 102

8. UCM handles the send schema command in the control script to for
receiver two. (See Use Case UCM_14 – Send Schema)

9. UCM handles the media initiator command in the control script for the
sender. (See Use Case UCM_16 – Enable Media Receiver)

10. UCM handles the media receiver command in the control script for
receiver one. (See Use Case UCM_24 – Enable Media Initiator)

11. UCM handles the media receiver command in the control script for
receiver two. (See Use Case UCM_24 – Enable Media Initiator)

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The Event handler creates the particular event and is logged out.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.

*Exceptions:

1. Unable to create an event by the Event handler.
2. Exception generated by the NCB after a network failure.

Concurrent Uses: None
*Related Use Cases: UCM_01 – Log in , UCM_03 – Create Connection, UCM_05 –
Add Participant, UCM_14 – Send Schema, UCM_16 – Enable Media Receiver, UCM_24
– Enable Media Initiator
--

Decision Support
*Frequency: This use case will be performed every time when a user tries to create
conference video, at least 1 per session.
*Criticality: This is required anytime that the system requests the creation of conference
video. This is an important use case as without this there will be no conference video
communication between three users.
*Risk: High. This use case relies on several other use cases.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 8% failure for every 24hrs use.
• Performance: Request should be handled in less than five (5) seconds, if no other

requests exist.

 103

• Supportability: The commands must be properly handled by Event handler.
• Implementation: Must be implemented in Java.

Modification History: - v1.10
*Owner: Raidel Batista
*Initiation date: 09/10/2007
*Date last modified: 09/22/2007

Use Case Send Demand Form

*Use Case ID: UCM_13 – Send Demand Form
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to send a demanded, or requested, form to a certain receiver. The script contains
sendDemandForm(“c1”,”form1”, www.cs.fiu.edu);

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully created a connection.
2. A form with the requested ID exists.
3. The form is being requested at a receiver side.
• Description:

Trigger: Use case begins when the Synthesis Engine requests a demanded form
to be sent via a control script.
The system responds by:

1. UCM obtains the connection ID
2. UCM obtains the information of the user requesting the form
3. UCM obtains the form ID
4. UCM obtains the mediumURL
5. UCM then sends the demanded form
6. Use case ends when the form is sent

• Post-conditions: The other party successfully received the form.
*Alternative Courses of Action:

 104

1. In step D3., if the formID is invalid, the operation is cancelled.
2. In step D4, if the medium is not available, the operation is cancelled.

Extensions: No Extensions.
*Exceptions:

1. No session can be found.
2. The demand form cannot be sent.

Concurrent Uses: None
*Related Use Cases: UCM_08 – SendForm.
--

Decision Support
*Frequency: This will occur every time that a request from the Synthesis Engine is made
to send a schema based on a request from another party at least one time per session.
*Criticality: High. This is required for anytime that the system requests to send a
demanded schema.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 5% failure for every 24 hrs use.
• Performance: Request should be handled in less than five seconds, if no other

requests exist and considering the number of participants in the connection.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Marylurdys Hernandez
*Initiation date: 09/17/2007
*Date last modified: 09/22/2007

 105

Use Case Send Schema

*Use Case ID: UCM_14 – Send Schema
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to sendSchema(“c1”,”a”,”b”,”control_xcml”, “data_xcml”).

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in
2. The system has successfully created a connection and a session IDs
3. The system has added participants to the connection such as there are at least two

participants in the connection
• Description:

Trigger: Use case begins when the Synthesis Engine requests to send a schema
via a control script.
The system responds by:

1. UCM obtains the session ID from the connection
2. NCB sends the control schema to all participants in the specified

connection
3. NCB sends the data schema to all participants in the specified connection

• Post-conditions: The initiator receives in return a schema from all participants.
*Alternative Courses of Action No alternate action
Extensions: No Extensions.
*Exceptions:

1. The session ID of the connection is null
2. The control schema is null
3. The data schema is null

Concurrent Uses: None
*Related Use Cases: UCM_01–Login, UCM_03–CreateConnection, UCM_05–Add
Participant
--

Decision Support
*Frequency: This will occur every time that a request from the Synthesis Engine is made
to send a schema on average of two per session.
*Criticality: This is required for anytime that the system requests to send a schema.

 106

*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 10% failure for every 24 hrs use.
• Performance: Request should be handled in less than five seconds, if no other

requests exist and considering the number of participants in the connection.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Marylurdys Hernandez
*Initiation date: 09/17/2007
*Date last modified: 09/22/2007

Use Case Receive Schema

*Use Case ID: UCM_15 – Receive Schema
Use Case Level: Functional sub-use case.
*Scenario: A control script is received from the Synthesis Engine containing a command
to receive a schema.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in
2. The system has completed a negotiation to receive a schema

• Description:
Trigger: Use case begins when the Synthesis Engine sends a schema via a
control script to this user.
The system responds by:

1. NCB generates a NotifySchemaReceived event that will be received by
event handler and passed to UCM manager.

2. UCM manager generates new event and signals the SE.

 107

• Post-conditions: The invitation is accepted or rejected.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:
Concurrent Uses: None
*Related Use Cases: UCM_14 – SendSchema.
--

Decision Support
*Frequency: This will occur every time that the system has previously finished
negotiations for sending a schema and the receiver is ready to accept it, on average of 2
per session.
*Criticality: This is required for anytime that the system is receiving a schema.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 4% failure for every 24 hrs use.
• Performance: Request should be handled in less than two seconds.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Marylurdys Hernandez
*Initiation date: 09/17/2007
*Date last modified: 09/22/2007

Use Case Enable Media Receiver

*Use Case ID: UCM_16 – Enable Media Receiver
Use Case Level: Functional sub-use case.

 108

*Scenario: A control script is received from the Synthesis Engine containing the
command enableMediaReceiver(“c1”, “audio”) for the connection c1.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully performed the login event from SE and it is logged in
2. The system has successful created a mapped connection and a session IDs
3. The system has added participants to the connection, such as there are at least

two participants in the connection
4. An initiator has sent a schema to all participants in the connection
5. This user has accepted the connection
6. This user sends back the final schema
7. The initiator sends the final schema back

• Description:
Trigger: Use case begins when the last schema two received schemas are
consistent. The Synthesis Engine requests the enablement of media receiver via a
control script.
The system responds by:

1. UCM obtains the session ID from the connection.
2. UCM enables the specified list of media to be received.

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: Media receiving is enabled in the receiver side.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. The session ID is null.
Concurrent Uses: None
*Related Use Cases: UCM_14 – SendSchema, UCM_24 – EnableMediaInitiator.
--

Decision Support
*Frequency: This will occur every time that a request from the Synthesis Engine is made
to enable media receiver at least 1 per session.
*Criticality: This is required for anytime that the system requests to enable media
receiver.

 109

*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.
• Reliability: Mean time to failure – 15% failure for every 24 hrs use.
• Performance: Request should be handled in less than three seconds, if no other

requests exist and considering the number of participants in the connection.
• Supportability: The command must be properly handled by NCB.
• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Marylurdys Hernandez
*Initiation date: 09/17/2007
*Date last modified: 09/22/2007

Use Case Load Macro

*Use Case ID: UCM_17-Load Macro
Use Case Level: Functional sub-use case
*Scenario: A control script including “removeParticipant” is received from the
Synthesis Engine through the UCM-SE interface. The UCM manager then recognizes this
control script and loads the defined macros from the local repository into memory. The
“removeParticipant” is now ready for deployment and execution.

• Actor: : Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The macro definition for this control script is predefined and stored in the

local repository
2. The control script is both syntactically and semantically valid .

• Description:
Trigger: Use case begins when a control script from the synthesis engine is
passed down to UCM for execution

 110

The system responds by.
1. UCM checks the type of the control script to be executed
2. UCM load the corresponding macro of the control script into memory
3. Use case ends when the macro to be executed is in memory ready for

execution.
• Relevant requirements: To increase portability, this use case should in no way

depend on actual macros, and the location of the macros in the repository.
• Post-conditions: Macro is loaded into the memory and ready for execution

*Alternative Courses of Action No alternate action.
Extensions: None
*Exceptions: No macro found in the local repository for this control script
Concurrent Uses: None
*Related Use Cases: the SaveMacroInstance use case
--

Decision Support
*Frequency: This use case will be performed at least ten times per application use, for
the simplest case of communication. It will actually occur every time a control script
from the Synthesis Engine is sent down for execution.
*Criticality: The absence of this use case will not only prevent the user from logging in
to the system, but also prevent any communication to be established. It is required for the
correct functioning of UCM.
*Risk: : Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Performance: The loading process should be done within 10 milliseconds.

However, loading macros must be done sequentially because only one script is
executed at a time.

• Supportability: This use case should not depend on the actual scripts and
macros. It should be extensible to repositories populated with large numbers of
macros.

• Interface: This use case should provide only one interface: loadMacro to the
synthesis engine developer, and hide the internal operation.

• Implementation: Must be implemented in java.
• Operation: The running UCM is invoked by SE and supported by NCB.

 111

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

Use Case Save Macro Instance

Use Case ID: UCM_18-Save Macro Instance
Use Case Level: Functional Sub-Use Case
*Scenario: UCM has requested to save the instance for Macro login with user name
“Burke” and pw = "1234". UCM Manager then saves that macro instance into the local
repository. UCM manager also maps the login script with the macro instance provided.

• Actor: Macro developer, Local repository
• Pre-conditions: The macro definition is already defined and ready for storage.
• Description:

 Trigger: The user initiates an action requesting to save the macro instance
The system responds by:

1. Saving the macro instance into the local repository as a string or a text
file

2. Register this macro in the local repository by adding a script-to-macro
mapping

• Relevant requirements: There is not macro saved in the local repository for this
particular control script

• Post-conditions: The macro is saved into the local repository and the script-to-
macro mapping is saved as well.

*Alternative Courses of Action : No alternative actions
Extensions:

1. These is already a macro instance defined for this particular control script, in this
case the system should either prompt to change to another control script or would
not allow this action.

*Exceptions:

 112

1. The macro instance is not successfully saved into the local repository, this
exceptions has to be handled by the Exception Handler.

Concurrent Uses: None
*Related Use Cases: None
--

Decision Support
*Frequency: This use case will be performed intensively before the first application use.
This will occur every time a new macro instance for a control script is created and need
to be saved. And then, as UCM supports more control scripts, it will be executed per
control script.
*Criticality: This is required for anytime a macro definition for a new control script
need to be saved into the local repository
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Supportability: This use case should be able to save any form of macro

instances.
• Interface: This macro should only have one interface: saveMacro() to the macro

developer.
• Implementation: This use case should be able to save the macro in all the

mainstream file systems.
• Performance: This use case should be handled within 10 milliseconds.
• Implementation: Must be implemented in java.

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

Note the sections with the * must be included in the use case.

 113

Use Case Create Exception

*Use Case ID: UCM_19-Create Exception
Use Case Level: Functional sub-use case
*Scenario: NCB notifies a ”mediumNotSent” exception to the UCM interpreter during
the execution of the “sendMedium” command. The interpreter then notifies the Exception
handler about this exception. The “mediumNotSent” exception is then handled by the
Exception handler.

• Actor: Network Communication Broker (NCB).
• Pre-conditions: This exception type must be able to be handled by the Exception

Handler.
• Description:

 Trigger: UCM identifies an execution exception and is ready to create an exception
 The system responds by

1. Check the exception type and exception information returned by the NCB
2. Wrap the exception information as a parameter of the notification.
3. Report the new Exception to the exception handler.

• Relevant requirements: None
• Post-conditions: The Exception is notified to the exception handler.

*Alternative Courses of Action : No alternative actions
Extensions: None
*Exceptions: None
Concurrent Uses: None
*Related Use Cases: the HandelException use case
--

Decision Support
*Frequency: This use case will be performed at least once per application use. It is
executed whenever an exception is identified and need to be created for further handling.
*Criticality: It is critically important for the correct functioning of the system.
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: System operation not handled directly by the user.

 114

• Performance: Exception should be caught by the system within 10 milliseconds.
• Reliability: Mean time to failure – 5% failure for every 24 hrs use.
• Supportability: This use case should be able to identify the current 15 exceptions

that might result from the runtime execution.
• Implementation: Must be implemented in Java.

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/09/2007
*Date last modified: 09/21/2007

Use Case Handle Exception

*Use Case ID: UCM_20-Handle Exception
Use Case Level: Functional sub-use case
*Scenario: The “loginException” occurs during the execution of some control script
containing “login”. The UCM interpreter notifies the exception handler about this
exception. The exception handler notifies the Synthesis Engine about the login failure.
 Actor: Synthesis Engine(SE)

• Pre-conditions:
1. The exception is already created and caught by the exception handler.
2. Policies for handling each exception are already defined.

• Description:
 Trigger: An exception is identified and reported to the Exception Handler.

The system responds by
1. Check the exception type and associated parameters of this exception
2. Decide on what actions should take to fix this exception, by predefined

policies.
3. Handle this exception by either notifying the Synthesis engine or to fix up this

exception inside UCM, either by retrying or using alternative policies.

 115

• Relevant requirements:
• Post-conditions: The exception is caught and handled successfully.

*Alternative Courses of Action :None
Extensions: None
*Exceptions: None
Concurrent Uses: None
*Related Use Cases: The CreateException use case
--

Decision Support
*Frequency: This use case will be performed at least once per application use . It is
executed whenever an exception is caught.
*Criticality: It is critically important to avoid system crash, therefore should be handled
carefully..
*Risk: Low. This use case is performed by a layer that is isolated from any system
resource.

Constraints:

• Usability: Should provide nice and informative exception messages to the user.
• Reliability: Mean time to failure – 5% failure for every 24 hrs use.
• Performance: Exceptions should be handled within 5 seconds, before user gets

bored..
• Supportability: This use case should handle the current 15 exceptions that might

result from the runtime execution.
• Implementation: Must be implemented in Java.
• Interface: This use case should only provide one method:handle() as an interface

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/12/2007

 116

Use Case Create Event

*Use Case ID: UCM_21 – Create Event
Use Case Level: Functional sub-use case.
*Scenario: Synthesis Engine sends a control script to UCM containing a command to
create an event ‘E’ for the sessionID ‘s1’ with the active connection ‘c1’.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The script received form the interpreter is in the legal format.
2. Participants are logged in and there is an active connection present.
3. A session with sessionID is generated and currently running in process.

• Description:
Trigger: Use case begins when the Synthesis Engine request the enabling of
media via a control script.
The system responds by:

1. UCM receives a message from the NCB to be passed on to the SE.
2. An event is created in response to the notification from the NCB and the events

are queued.
3. UCM obtains the sessionID for the current connection session.
4. UCM calls the Create Event function to the SE, which creates a log for the

particular event.
• Relevant requirements: {In this section reference is made to any other

requirements documents such as industry standards or government regulations.}
• Post-conditions: The Event handler creates the particular event and is logged in

the Local Repository.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to create an event by the Event handler.
2. The macro for a script is not found in the repository.
3. There is a network failure in the communication.

Concurrent Uses: None
*Related Use Cases: UCM_01 -- Login, UCM_05 – AddParticipant, UCM_03 – Create
Connection.

 117

--

Decision Support
*Frequency: This use case will be performed every time a call is made from NCB to log
a particular event. It will be initiated at least 10 times per session.
*Criticality: High. This is an important use case as it logs the event and takes proper
actions in case of exceptions or can rollback to the previous state in case of a system or
network failure.
*Risk: High. The system creates events for the purpose of saving them and loading them
back whenever required.

Constraints:
• Usability: System users are other subsystems(NCB and SE), which communicate

through well-defined scripts and are easy to operate for other systems.
• Reliability: 10% failure rate is allowed for every 24hrs use.
• Performance: Requests should be handled in less than 2 minutes, if no other

requests exist. Response time can be more depending on the number of events
required to be created.

• Supportability: The command must be properly supported by Event handler of
UCM.

• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Abhishek Bhattacharya
*Initiation date: 09/10/2007
*Date last modified: 09/23/2007

Use Case Load Event State

*Use Case ID: UCM_22 – Load Event
Use Case Level: Functional sub-use case.

 118

*Scenario: Synthesis Engine sends a control script to UCM containing a command to
load an event ‘E’ for the sessionID ‘s1’ with the active connection ‘c1’.
Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. Participants are logged in and there is an active connection present.

 2. A session with sessionID is generated and currently running in process.
 3. The script received form the interpreter is in the legal format.

4. There is a failure in the system, which requires to rollback by loading the saved
event.

• Description:
Trigger: Use case begins when the Synthesis Engine request the logged event to
be loaded via a control script.
The system responds by:

1. Event Queue is loaded in the UCM in response to a system failure and the
system needs to rollback to its previous state.

2. UCM obtains the session ID from the connection session.
3. UCM calls the Load Event function whenever the logged events are to be

loaded.
• Relevant requirements: {In this section reference is made to any other

requirements documents such as industry standards or government regulations.}
• Post-conditions: The Event handler loads the corresponding event state from the

Local Repository.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to load the event state from the Local Repository.
2. Not able to communicate with the NCB or SE.

Concurrent Uses: None
*Related Use Cases: UCM_21 – Create Event, UCM_23 – Save Event State.
--

Decision Support
*Frequency: This use case will be performed every time a call is made to load a
particular logged event by the UCM Manager. It will be initiated at least 5 times per
session whenever there is a system failure.

 119

*Criticality: High. This is important for the system to rollback to its previous state after
a network or system failure or any types of event related to a particular connection
handled by the Event Handler.
*Risk: High. The system loads the particular events from the repository back to the UCM
Manager.

Constraints:
• Usability: System users are other subsystems(NCB and SE), which communicate

through well-defined scripts and are easy to operate for other systems..
• Reliability: 15% failure rate is allowed for every 24hrs use.
• Performance: Requests should be handled in less than 2 minutes, if no other

requests exist. Response time can be more depending on the number of events
required to be loaded.

• Supportability: The command must be properly supported by Event handler of
UCM.

• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Abhishek Bhattacharya
*Initiation date: 09/10/2007
*Date last modified: 09/23/2007

Use Case Save Event State

*Use Case ID: UCM_23 – Save Event
Use Case Level: Functional sub-use case.
*Scenario: Synthesis Engine sends a control script to UCM containing a command to
save an event ‘E’ for the sessionID ‘s1’ with the active connection ‘c1’.

• Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. Participants are logged in and there is an active connection present.

 120

 2. A session with sessionID is generated and currently running in process.
 3. The script received form the interpreter is in the legal format.

 4. An exception is thrown from the NCB or the UCM itself in response to a set of
particular events and the event state required to be saved.

 5. The events are queued up and are ready to be saved in the repository.

• Description:
Trigger: Use case begins when the Synthesis Engine requests the event to be
saved via a control script.
The system responds by:

1. The logged event is saved in the Event Queue of the UCM.
2. UCM obtains the session ID from the connection.
3. UCM calls the Save Event function whenever the events are to be saved.

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The Event handler saves the corresponding event state into the
Local Repository.

*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. Unable to save the event state into the Local Repository.
2. Not able to communicate with the NCB.

Concurrent Uses: None
*Related Use Cases: UCM_21 – Create Event.
--

Decision Support
*Frequency: This use case will be performed every time a call is made to save a
particular system event. It will be saved at least once for every session but depends on
the size of the event queue.
*Criticality: High. This important for the system to save a particular event and then
loading it back whenever required.
*Risk: High. The system saves the particular events from the event queue to the
repository.

Constraints:
• Usability: System users are other subsystems(NCB and SE), which communicate

through well-defined scripts and are easy to operate for other systems.

 121

• Reliability: 20% failure rate is allowed for every 24hrs use.
• Performance: Requests should be handled in less than 3 minutes, if no other

requests exist. Response time can be more depending on the number of events
required to be saved.

• Supportability: The command must be properly supported by the Event handler
of UCM.

• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Abhishek Bhattacharya
*Initiation date: 09/10/2007
*Date last modified: 09/23/2007

Use Case Enable Media Initiator

*Use Case ID: UCM_24 – Enable Media Initiator
Use Case Level: Functional sub-use case.
*Scenario: UCM receives a control script from the Synthesis Engine containing a
command to add a media with name “MediaName1” and the medium URL as”
www.medianame1.com”to the active connection “c1”.
Actor: Synthesis Engine (SE), Network Communication Broker (NCB).

• Pre-conditions:
1. The system has successfully created a connection.
2. The initiator has completed the schema negotiation and is ready to send

the media stream.
• Description:

Trigger: Use case begins when the Synthesis Engine request the enabling of
media via a control script.
The system responds by:

1. UCM obtains the session ID from the connection.
2. Connection ID specifies the connection for which the media is initiated.
3. This will enable the specified list of media to the designated

connectionID.

 122

• Relevant requirements: {In this section reference is made to any other
requirements documents such as industry standards or government regulations.}

• Post-conditions: The audio connection is initiated by the sender.
*Alternative Courses of Action No alternate action.
Extensions: No Extensions.
*Exceptions:

1. No sessions can be found.
2. No media is available for communication.

Concurrent Uses: None
*Related Use Cases:UCM_01 -- Login, UCM_05 – AddParticipant, UCM_03 – Create
Connection, UCM_14 – Send Schema.
--

Decision Support
*Frequency: This use case will be performed at least once per connection instance. This
will occur every time that a request from the Synthesis Engine is made to initiate the
media after the schema negotiation is successful.
*Criticality: High. This is required for anytime that the system requests the initiation for
media communication. This is an important use case as without this there will be no
media available for communication.
*Risk: High. This use case is important for communication among users.

Constraints:
• Usability: System users are other subsystems(NCB and SE), which communicate

through well-defined scripts and are easy to operate for other systems.
• Reliability: 5% failure rate is allowed for every 24hrs use.
• Performance: Requests should be handled in less than 2 minutes, if no other

requests exist. Response time can be more depending on the number of
participants in the active connection.

• Supportability: The command must be properly supported by NCB and the
Media Handler of UCM.

• Implementation: Must be implemented in Java.

Modification History: - v1.2
*Owner: Abhishek Bhattacharya
*Initiation date: 09/10/2007
*Date last modified: 09/23/2007

 123

Load Undefined Macro(misuse)

*Use Case ID: UCM_MU_LoadUnDefMacro
Use Case Level: Mis sub-use case
*Scenario: A control script containing “remove participant” is passed down from the
synthesis engine through the UCM-SE interface, to be executed. However, the script
interpreter cannot find the corresponding macro for it. The system should not crash, but
should provide nice error messages to the upper layers.

• Actor: Synthesis Engine (SE),
• Pre-conditions:

1. The control script which has no macro definitions is passed down from the
synthesis engine

• Description:
Trigger: Use case begins when a control script from the synthesis engine is
passed down to UCM for execution
The system responds by

1. UCM checks the type of the control script to be executed
2. When UCM load the corresponding macro of the control script into

memory, it can not find it in the local repository
• Relevant requirements: None
• Post-conditions: The system should not crash due to lack of macro definition.

*Alternative Courses of Action No alternate action.
Extensions: None
Concurrent Uses: None
*Related Use Cases:
--

Decision Support
*Frequency: An average of 4 times per application use.
*Criticality: High
*Risk: Low, this use case is performed by a layer that is isolated from any system
resource.

 124

Constraints:
• Usability: This use case should provide nice error messages to the user..
• Performance: The total process for searching the macro definition should not be

more than 5 seconds, before the user gets bored.
• Implementation: Must be implemented in Java.
• Operation: The running UCM is invoked by SE and supported by NCB.

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

Respond to Undefined Macro (security)

*Use Case ID: UCM_SU_LoadUnDefMacro
Use Case Level: Mis sub-use case
*Scenario: A control script containing “sendDemandForm” is passed down from the
synthesis engine through the UCM-SE interface. The macro for “sendDemandForm” is
not defined in the local repository. The system notifies to SE that this command is not
defined and suggested a related one that is already defined “sendForm”.

• Actor: Synthesis Engine (SE),

• Pre-conditions:
1. The control script which has no macro definitions is passed down from the

synthesis engine

• Description:
Trigger: Use case begins when a undefined control script from the synthesis
engine is passed down to UCM for execution
The system responds by

 125

1. Respond to Synthesis Engine that this command is undefined in the
repository

2. Look for a related macro for this command and recommend to the
synthesis engine

• Relevant requirements: None
• Post-conditions: Possible attack to the UCM is prevented.

*Alternative Courses of Action No alternate action.
Extensions: None
Concurrent Uses: None
*Related Use Cases: the loadUnDefMacro use case
--

Decision Support
*Frequency: Not frequent, but might happen once or twice per application use..
*Criticality: High
*Risk: Low, this use case is performed by a layer that is isolated from any system
resource.

Constraints:
• Usability: This use case should provide nice error messages to the user..
• Performance: The responses should be returned in at most 2 seconds
• Implementation: Must be implemented in Java.
• Operation: The running UCM is invoked by SE and supported by NCB.

Modification History –v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

 126

Use Case Save Macro Instance(misuse)

Use Case ID: UCM_MU_SaveMacroInstane
Use Case Level:
*Scenario: UCM has requested to save the instance for Macro login with user name
“Burke” and pw = "1234". UCM Manager then saves that macro instance into the local
repository. UCM manager also maps the login script with the macro instance provided.

• Actor: Macro developer, Local repository
• Pre-conditions: The macro definition is already defined and ready for storage.
• Description:

 Trigger: The user initiates an action requesting to save the macro instance
The system responds by:

1. Saving the macro instance into the local repository as a string or a text
file

2. When recording the script-to-macro mapping, UCM finds the macro has
existed in the local repository.

• Relevant requirements: None

• Post-conditions:
1. The system should not overwrite the previous one without notification
2. The system should not crash due to this unexpected event.

*Alternative Courses of Action : No alternative actions
Extensions: None

*Exceptions: None
1. The macro instance is not successfully saved into the local repository, this

exceptions has to be handled by the Exception Handler.
Concurrent Uses: None
*Related Use Cases: the SaveExistedMacro security use case
--

Decision Support
*Frequency: This use case does not happen frequently, at most once or twice per
application use..
*Criticality: Low, not core functionality
*Risk: Low. A layer that is isolated from any system resource performs this use case.

Constraints:

 127

• Supportability: This use case should be able to save any form of macro
instances.

• Interface: This macro should only have one interface: saveMacro() to the macro
developer.

• Implementation: This use case should be able to save the macro in all the
mainstream file systems.

• Performance: This use case should be handled within 10 milliseconds.
• Implementation: Must be implemented in Java.

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

Respond to Saving Existed Macro(security)

Use Case ID: UCM_SU_SaveExistedMacro
Use Case Level:
*Scenario: UCM has requested to save the instance for Macro login with user name
“Burke” and pw = "1234", which is already existing in the repository. The system should
notify the user of this accident and prompt the user either to disregard the current macro
or to overwrite the previous one.

• Actor: Macro developer, Local repository
• Pre-conditions: The macro definition is already defined and ready for storage.

• Description:
 Trigger: The user initiates an action requesting to save an existed macro instance

The system responds by:
1. Notifying the user that the macro instance has already existed
2. Provide the use with two solutions: either disregard the current macro instance or

to overwrite the previous one.
• Relevant requirements: None

 128

• Post-conditions: Either the current macro is saved into the local repository or the
previous one remains.

*Alternative Courses of Action : No alternative actions
Extensions: None
*Exceptions: None
Concurrent Uses: None
*Related Use Cases: the SaveMacroInstane misuse case
--

Decision Support
*Frequency: This use case does not happen frequently, at most once or twice per
application use..
*Criticality: Low, not core functionality
*Risk: Low. A layer that is isolated from any system resource performs this use case.

Constraints:
• Supportability: This use case should be able to save any form of macro

instances.
• Interface: This macro should only have one interface: saveMacro() to the macro

developer.
• Implementation: This use case should be able to save the macro in all the

mainstream file systems.
• Performance: This use case should be handled within 10 milliseconds
• Implementation: Must be implemented in Java.

Modification History – v1.2
*Owner: Guangqiang Zhao
*Initiation date: 09/08/2007
*Date last modified: 09/21/2007

10.3 Appendix C – User Interface designs.

 129

cvm
Class CVM
java.lang.Object
 cvm.CVM
All Implemented Interfaces:

cvm.session.media.sip.event.CommunicationsListener,
cvm.session.media.sip.simple.event.ContactListChangeListener,
java.util.EventListener, cvm.ICVM,
cvm.session.media.sip.security.SecurityAuthority,
cvm.session.media.sip.simple.SubscriptionAuthority

public class CVM
extends java.lang.Object
implements cvm.session.media.sip.security.SecurityAuthority,
cvm.session.media.sip.simple.SubscriptionAuthority,
cvm.session.media.sip.event.CommunicationsListener,
cvm.session.media.sip.simple.event.ContactListChangeListener, cvm.ICVM
Author:

Field Summary
 cvm.session.party.PartyGroup partyList

Constructor Summary
CVM()

CVM(executionengine.ExecutionEngine ee)

 130

Method Summary
 boolean addedMedia(java.lang.String sid,

java.lang.String mediaType)

 boolean addedParty(int sid,
java.lang.String userName)

 boolean addMedia(java.lang.String sid,
java.lang.String media_type,
java.lang.String media_location)
 related to media tranmission

 boolean addParty(java.lang.String sid,
java.lang.String name)

 boolean addPartyToPartyList(java.lang.String
 displayName,
java.lang.String presenceUri)

 int adjustMediaQoS(java.lang.String sid,
java.lang.String media_type,
java.lang.String media_location,
int quality)

 void callReceived(cvm.session.media.sip.e
vent.CallEvent evt)

 void callRejectedLocally(cvm.session.medi
a.sip.event.CallRejectedEvent evt)

 void callRejectedRemotely(cvm.session.med
ia.sip.event.CallRejectedEvent evt)

 void communicationsErrorOccurred(cvm.sess
ion.media.sip.event.CommunicationsEr
rorEvent evt)

 void contactAdded(cvm.session.media.sip.s
imple.event.ContactAddedEvent evt)

 void contactRemoved(cvm.session.media.sip
.simple.event.ContactRemovedEvent ev
t)

 boolean createdSession(int sid)
 void createSession(java.lang.String uuid)

 boolean destroySession(java.lang.String sid)

 131

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Field Detail

partyList
public cvm.session.party.PartyGroup partyList

Constructor Detail

CVM
public CVM()

CVM
public CVM(executionengine.ExecutionEngine ee)

Method Detail

notificationReceived
public void
notificationReceived(cvm.session.media.sip.simple.event.NotificationRec
eivedEvent evt)

Specified by:
notificationReceived in interface
cvm.session.media.sip.simple.event.ContactListChangeListener

contactAdded
public void
contactAdded(cvm.session.media.sip.simple.event.ContactAddedEvent evt)

Specified by:
contactAdded in interface
cvm.session.media.sip.simple.event.ContactListChangeListener

contactRemoved
public void
contactRemoved(cvm.session.media.sip.simple.event.ContactRemovedEvent e
vt)

Specified by:
contactRemoved in interface
cvm.session.media.sip.simple.event.ContactListChangeListener

callReceived
public void callReceived(cvm.session.media.sip.event.CallEvent evt)

Specified by:
callReceived in interface
cvm.session.media.sip.event.CommunicationsListener

 132

messageReceived
public void
messageReceived(cvm.session.media.sip.event.MessageEvent evt)

Specified by:
messageReceived in interface
cvm.session.media.sip.event.CommunicationsListener

callRejectedLocally
public void
callRejectedLocally(cvm.session.media.sip.event.CallRejectedEvent evt)

Specified by:
callRejectedLocally in interface
cvm.session.media.sip.event.CommunicationsListener

callRejectedRemotely
public void
callRejectedRemotely(cvm.session.media.sip.event.CallRejectedEvent evt)

Specified by:
callRejectedRemotely in interface
cvm.session.media.sip.event.CommunicationsListener

registered
public void
registered(cvm.session.media.sip.event.RegistrationEvent evt)

Specified by:
registered in interface
cvm.session.media.sip.event.CommunicationsListener

registering
public void
registering(cvm.session.media.sip.event.RegistrationEvent evt)

Specified by:
registering in interface
cvm.session.media.sip.event.CommunicationsListener

unregistered
public void
unregistered(cvm.session.media.sip.event.RegistrationEvent evt)

Specified by:
unregistered in interface
cvm.session.media.sip.event.CommunicationsListener

unregistering
public void
unregistering(cvm.session.media.sip.event.RegistrationEvent evt)

Specified by:
unregistering in interface
cvm.session.media.sip.event.CommunicationsListener

 133

receivedUnknownMessage
public void
receivedUnknownMessage(cvm.session.media.sip.event.UnknownMessageEvent
evt)

Specified by:
receivedUnknownMessage in interface
cvm.session.media.sip.event.CommunicationsListener

communicationsErrorOccurred
public void
communicationsErrorOccurred(cvm.session.media.sip.event.CommunicationsE
rrorEvent evt)

Specified by:
communicationsErrorOccurred in interface
cvm.session.media.sip.event.CommunicationsListener

register
public boolean register(java.lang.String uri,
 java.lang.String displayName,
 java.lang.String passwd)

Registers a user with the sip server. Note: Requires the uri to be in the format:
"sip:"+username+"@bobcat.cs.fiu.edu".
Specified by:
register in interface cvm.ICVM

obtainCredentials
public cvm.session.media.sip.security.UserCredentials
obtainCredentials(java.lang.String realm,

cvm.session.media.sip.security.UserCredentials defaultValues)

Implements obtainCredentials from SecurityAuthority.
Specified by:
obtainCredentials in interface
cvm.session.media.sip.security.SecurityAuthority
Parameters:
realm - the realm that credentials are needed for
defaultValues - the values to propose the user by default
Returns:
the credentials for the specified realm or null if no credentials could be obtained

requestSubscriptionAuthorization
public cvm.session.media.sip.simple.SubscriptionAuthorizationResponse
requestSubscriptionAuthorization(java.lang.String displayName,

java.lang.String address,

java.lang.String message,

 134

java.lang.String[] acceptedResponses)

Description copied from interface:
cvm.session.media.sip.simple.SubscriptionAuthority
this method would (indirectly) ask the user for their consent or a set of
preauthorized subscribers. The method operates in a blocking manner. It is
therefore recommended that prior to calling it, the PresenceAgent should send an
ACCEPTED response and send a NOTIFY containing bogus presence
information data (such data may be obtained by calling the
getPresenceInformationData method with a null authorization parameter).
Specified by:
requestSubscriptionAuthorization in interface
cvm.session.media.sip.simple.SubscriptionAuthority

launch
public void launch()

shutdown
public void shutdown()

Specified by:
shutdown in interface cvm.ICVM

getUserName
public java.lang.String getUserName()

main
public static void main(java.lang.String[] args)

createSession
public void createSession(java.lang.String uuid)

Specified by:
createSession in interface cvm.ICVM

joinSession
public void joinSession(java.lang.String userid,
 java.lang.String sid)

Specified by:
joinSession in interface cvm.ICVM

destroySession
public boolean destroySession(java.lang.String sid)

Specified by:
destroySession in interface cvm.ICVM

getCapability
public boolean getCapability(java.lang.String user,

 135

 java.lang.String media_type)
related to party
Specified by:
getCapability in interface cvm.ICVM

getCapabilities
public java.util.ArrayList getCapabilities()

Specified by:
getCapabilities in interface cvm.ICVM

addPartyToPartyList
public boolean addPartyToPartyList(java.lang.String displayName,
 java.lang.String presenceUri)

addParty
public boolean addParty(java.lang.String sid,
 java.lang.String name)

Specified by:
addParty in interface cvm.ICVM

removeParty
public boolean removeParty(java.lang.String sid,
 java.lang.String name)

Specified by:
removeParty in interface cvm.ICVM

addMedia
public boolean addMedia(java.lang.String sid,
 java.lang.String media_type,
 java.lang.String media_location)

related to media tranmission
Specified by:
addMedia in interface cvm.ICVM

removeMedia
public boolean removeMedia(java.lang.String sid,
 java.lang.String media_type,
 java.lang.String media_location)

Specified by:
removeMedia in interface cvm.ICVM

sendMedia
public boolean sendMedia(java.lang.String sid,
 java.lang.String media_type,
 java.lang.String media_location)

Specified by:
sendMedia in interface cvm.ICVM

 136

stopMedia
public boolean stopMedia(java.lang.String sid,
 java.lang.String media_type,
 java.lang.String media_location)

Specified by:
stopMedia in interface cvm.ICVM

adjustMediaQoS
public int adjustMediaQoS(java.lang.String sid,
 java.lang.String media_type,
 java.lang.String media_location,
 int quality)

Specified by:
adjustMediaQoS in interface cvm.ICVM

remoteSessionOpen
public boolean remoteSessionOpen(int sid)

related to callbacks from Execution Engine

remotePartyAdded
public boolean remotePartyAdded(int sid,
 java.lang.String user)

mediaRequest
public boolean mediaRequest(java.lang.String userName,
 java.lang.String media_type,
 java.lang.String media_location)

createdSession
public boolean createdSession(int sid)

addedParty
public boolean addedParty(int sid,
 java.lang.String userName)

addedMedia
public boolean addedMedia(java.lang.String sid,
 java.lang.String mediaType)

sendSchema
public boolean sendSchema(java.lang.String sid,
 java.lang.String userName,
 java.lang.String schema)

Specified by:
sendSchema in interface cvm.ICVM

 137

sessionNegotiation
public boolean sessionNegotiation(java.lang.String sid,
 java.lang.String userName,
 java.lang.String sessionMsg)

snCreateSession
public boolean snCreateSession(java.lang.String sid,
 java.lang.String userName)

getNetworkAddressManager
public cvm.sc.impl.netaddr.NetworkAddressManagerServiceImpl
getNetworkAddressManager()

10.4 Appendix D – Detailed Class Diagrams

UCM_Manager
<<Subsystem>>

UCM_M_Facade
<<UCM_Manager>>

-ucmManager

+notifyEvent(event: Handles_Event)
+executeScript(script: String)

Singleton Design Pattern
Used to limit the instances
to 1.

Facade Pattern
used to improve
communication
between subsystems.

UCMManager
<<UCM_Manager>>

-se
-ncb: NCB

+Instance(): UCMManager
+executeScript(srcipt: String)
+notifyEvent(event: Handles_Event)
+attachSynthesisEngine(se: SynthesisEngine)
+attachNCB(ncb: NCB)
+notifyEvent(event: Handles_Event)
-stepExecution()

-instance

OCL Statement:
Context: UCM_M_Facade inv: ucmManager<>null
Context: UCM_M_Facade::executeScript(script) pre: script.length>0
Context: UCM_M_Facade::executeScript(script) post: ucmManager<>null
Context: UCM_M_Facade::notifyEvent(event) pre: event <> null
Context: UCM_M_Facade::notifyEvent(event) post: ucmManager<>null

 138

Fig C.1 UCM_Manager class diagram.

Description: The UCM_Manager controls the work flow inside the UCM system. This class

also notifies the overlying system of any event that are specific to it.

UCM_Interpreter
<<Subsystem>>

UCM_I_Facade
<<UCM_Interpreter>>

-ucmAdapter: UCM_Interpreter_Adapter

+parseScript(script: String)

Facade Pattern
used to improve
communication
between subsystems.

UCM_Interepreter_Mk
<<UCM_Interpreter>>

-commandQueue: MacroCommand
-scriptParser: Parser

+Instance(): UCM_Interepreter_Mk
+parseScript(script: String)
+executeNextCommand()

Singleton Design Pattern
Used to limit the instances
to 1.

-instance

UCM_Interpreter_Adapter
<<UCM_Interpreter>>

-ucmMk: UCM_Interepreter_Mk

+parseScript(script: String)
+Instance(): UCM_Interpreter_Adapter

initialize communication

Command
<<UCM_Interpreter>>

+execute()

MacroCommand
<<UCM_Interpreter>>

-myMacro: MacroNode
-macroName

+execute()
+getNode()
+getName()

MacroNode
<<UCM_Interpreter>>

-mySE: ScriptEvaluator
-paramVals: Object[]

+getSE()
+getParameterValues()

MacroInterpreter
<<UCM_Interpreter>>

+interpretMacro(repoMacro: Macro, paramValues: ArrayList, envVars: ArrayList<EnvVariable>)

Macro
<<UCM_Interpreter>>

-paramNameList: ArrayList
-paramTypeList: ArrayList
-script: String
-returnType: String
-name: String

+getParamNameList()
+setParamNameList(paramNameList: ArrayList)
+getParamTypeList()
+setParamTypeList(paramTypeList: ArrayList)
+getScript()
+setScript(script: String)
+getReturnType()
+setReturnType(returnType: String)
+getName()
+setName(name: String)

Script
<<UCM_Interpreter>>

-callList: ArrayList
-itr: Iterator

+hasNext()
+add(functionName: String, returnType: String, parmTypes: ArrayList, parmValues: ArrayList)

Call
<<UCM_Interpreter>>

-functionName: String
-returnType: String
-parmTypes: ArrayList
-parmValues: ArrayList

Parser
<<UCM_Interpreter>>

-reader: BufferedReader

+parse(script: String)
+getFunctionName(line: String)
+getReturnType(line: String)
+getParmTypes(line: String)
+getParmValues(line: String)
+makeList(stringList: String)

Command Design Pattern
Used in UCM to handle the
loggin of instruction and
the saving of states.

-instance

OCL Statement:
Context: UCM_I_Facade inv: ucmAdapter<>null
Context: UCM_I_Facade::parseScript(script, se,ncb) pre: script.length>0 and se<>null and ncb<>nul
Context: UCM_I_Facade::parseScript(script, se,ncb) post: ucmAdapter<>null

EnvVariable
<<UCM_Interpreter>>

-varName: String
-typeName: String
-varValue: Object

+getParamName()
+getParamType()
+getParamValue()

Fig C.2 UCM_Interpreter detailed class diagram.

 139

Description: The UCM_Interpreter handels the pasrsing and execution of a control script.

Every script is parsed into a script object containing a list of call object for every function

inside the original control script. Every call is then converted into a command for execution.

UCM_Repository
<<Subsystem>>

UCM_R_Facade
<<UCM_Repository>>

-loader: MacroLoader

+loadMacro(name: String)

Facade Pattern
used to improve
communication
between subsystems.

Singleton Design Pattern
Used to limit the instances
of the Repository
to 1.

Sources
<<UCM_Repository>>

+loader(sName: String)

Strategy Pattern
Used to allow multiple types
of repositories.

MacroLoader
<<UCM_Repository>>

+loadMacro(name: String)

SourceDBLoader
<<UCM_Repository>>

-conn: Connection
-stmt: Statement
-srs: ResultSet

+parser(s: String)
+loader(name: String)
+Instance(): SourceDBLoader

SourceFileSysLoader
<<UCM_Repository>>

+loader(name: string)
+Instance(): SourceFileSysLoader

-instance -instance

OCL Statement:
Context: UCM_R_Facade inv: self<>null
Context: UCM_R_Facade::loadMacro(name) pre: name.length>0
Context: UCM_R_Facade::loadMacro(name) post: self.loadMacro(pre.name) <> null

MSAccessConnection
<<UCM_Repository>>

-username: String
-password: String
-driver: String = sun.jdbc.odbc.JdbcOdbcDriver
-conn: Connection

+getConn()

MySQLConnection
<<UCM_Repository>>

-username: String
-password: String
-url: String
-hostname: String
-port: String
-dbName: String
-dbName: String = com.mysql.jdbc.Driver

+getConn()

Rep_Properties
<<UCM_Repository>>

+DB_USERNAME: String = db_username
+DB_PASSWORD: String = db_password
+DB_HOST: String = db_host
+DB_PORT: String = db_port
+DB_NAME: String = db_name
+REP_TYPE: String = rep_type
+FS_ROOT: String = fs_root
-p: Properties
-configFilename: String = config.properties
-configFile: File

+getProperty(prop: String)
+toString()

Rep_Default_Properties
<<UCM_Repository>>

RepositoryType
<<UCM_Repository>>

+ACCESS: String = Access
+MYSQL: String = MySQL
+FILE_SYSTEM: String = File

Fig C.3 UCM_Repository detailed class diagram.

Description: The UCM_Repository stores the macros for the execution of the control scripts.

Macros can be added at any time. This ensures the extensibility of the application without

having to write or change any core code.

 140

UCM_EventHandler
<<Subsytem>>

UCMEventHandler
<<UCM_EventHandler>>

+handleEvent(Handles_Event: e)
+Instance(): UCMEventHandler

ConnectionCreatedReply_Event
<<UCM_EventHandler>>

-notifyConnectionReply: boolean = false

+getNotifyConnection()

Handles_Event
<<UCM_EventHandler>>

NotifyLoginReply_Event
<<UCM_EventHandler>>

+contactList: Object = null

+getContactList()

PartyAddedReply_Event
<<UCM_EventHandler>>

+notifyPartyAdded: boolean = false

+getNotifyPartyAdded()

PartyRemovedReply_Event
<<UCM_EventHandler>>

+notifyPartyRemovedReply: boolean = false

+getNotifyPartyRemoved()

SendSchemaReply_Event
<<UCM_EventHandler>>

+sendStatus: boolean = false

+isSendStatus()

Facade Pattern
used to improve
communication
between subsystems.

OCL Statement:
Context: UCMEventHandler inv: self<>null
Context: UCMEventHandler::handleEvent(e) pre: e<>null
Context: UCMEventHandler::handleEvent(e) post: self <> null

-instance

Singleton Design Pattern
Used to limit the instances
to 1.

ConnectionDeclinedReply_Event
<<UCM_EventHandler>>

-notifyConnectionReply: boolean = false

+getNotifyConnection()

NotifyLogoffReply_Event
<<UCM_EventHandler>>

-isLogedoff: boolean

+isLogedoff()

MediaInitiatorEnableReply_Event

-notifyEnableMediaReply: boolean = false

+getNotifyMedia()

Fig C.4 UCM_EventHandler detailed class diagram.

Description: The UCM_EventHandler will coordinate and orchestrate the events raised by

other subsystems as well as deciding what to do in each case.

 141

UCM_ExceptionHandler
<<Subsystem>>

UCMExceptionHandler
<<UCM_ExceptionHandler>>

+handleException(e: Exception)
+Instance(): UCMExceptionHandler

DataNotFoundException
<<UCM_ExceptionHandler>>

-dataName: String

+getDataName()

IllegalMacroArgumentException
<<UCM_ExceptionHandler>>

-macroName: String
-argName: String

+getMacroName()
+getIllegalArgument()

InvalidScriptException
<<UCM_ExceptionHandler>>

-scriptName: String

+getscriptName()

MacroNotFoundException
<<UCM_ExceptionHandler>>

-macroName: String

+getMacroName()

NoSessionException
<<UCM_ExceptionHandler>>

-connID: String

+getConnectionID()

PartyNotFoundException
<<UCM_ExceptionHandler>>

-partName: String

+getPartyName()

Facade Pattern
used to improve
communication
between subsystems.

OCL Statement:
Context: UCMExceptionHandler inv: self<>null
Context: UCMExceptionHandlerr::handleException(e) pre: e<>null
Context: UCMExceptionHandler::handleException(e) post: self<> null

Singleton Design Pattern
Used to limit the instances
to 1.

-instance

ControlSchemaNotSentException
<<UCM_ExceptionHandler>>

DataSchemaNotSentException
<<UCM_ExceptionHandler>>

LoginException
<<UCM_ExceptionHandler>>

PartyNotAddedException
<<UCM_ExceptionHandler>>

-partyName: String

+getPartyName()

SchemaNotSavedException
<<UCM_ExceptionHandler>>

Fig C.5 UCM_ExcpetionHandler detailed class diagram.

Description: - The UCM_ExceptionHandler will be responsible for deciding how to act on

exceptions received due to control script faults, NCB specific messages, or bad function call

returns.

 142

10.5 Appendix E – Class Interfaces

cvm.ucm.handlers
Class UCMEventHandler
java.lang.Object
 cvm.ucm.handlers.UCMEventHandler
All Implemented Interfaces:

Uses_Listener, java.util.EventListener

public class UCMEventHandler
extends java.lang.Object
implements Uses_Listener

Field Summary
private

static UCMEventHandler
instance

Constructor Summary
private UCMEventHandler()

 The UCMEventhandler constructor register itself with the event source,
namely the NCBEventObjectManager, which will fire the events.

Method Summary
private void handleEvent(Handles_Event e)

 This method will handle all the events coming from
NCB OCL Statement: Context:
UCMEventHandler::handleEvent(e) pre: e<>null Context:
UCMEventHandler::handleEvent(e) post: self <> null

static UCMEventHandler Instance()
 Implementation of the instance method as in the
Singleton design pattern.

 void use(Handles_Event event)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

 143

instance
private static UCMEventHandler instance

Constructor Detail

UCMEventHandler
private UCMEventHandler()

The UCMEventhandler constructor register itself with the event source, namely
the NCBEventObjectManager, which will fire the events.

Method Detail

Instance
public static UCMEventHandler Instance()

Implementation of the instance method as in the Singleton design pattern.
Returns:
UCMEventhandler instnace

handleEvent
private void handleEvent(Handles_Event e)

This method will handle all the events coming from NCB OCL Statement:
Context: UCMEventHandler::handleEvent(e) pre: e<>null Context:
UCMEventHandler::handleEvent(e) post: self <> null
Parameters:
e - the event that will be handled by the handler class

use
public void use(Handles_Event event)

Specified by:
use in interface Uses_Listener

cvm.ucm.handlers
Class UCMEventObjectManager
java.lang.Object
 cvm.ucm.handlers.UCMEventObjectManager

public class UCMEventObjectManager
extends java.lang.Object

This class handles the firing of events for UCM.

Author:
Frank Hernandez

 144

Field Summary
private

static UCMEventObjectManager
instance

private
static java.util.Vector

listeners

private
static java.lang.Object

syncObject_

Constructor Summary
private UCMEventObjectManager()

Method Summary
 void addDownListener(java.util.EventListener li

stener)

 void addUpListener(Uses_Listener listener)

private void fireUpEventUCM(Handles_Event event)
 General Event Triger.

static UCMEventObjectManager Istance()
 Implementation of the Instance method as in
the singleton design pattern.

 void notifyConnectionCreatedReply_Event(boolean
 notifyConnectionReply)
 This methods notifies UCM of a
ConnectionCreatedReply.

 void notifyConnectionDeclinedReply_Event(boolea
n notifyConnectionReply)
 This methods notifies UCM of a
ConnectionDeclineReply.

 void notifyControlSchemaNotSentException_Event(
)
 Notify SE of a
ControlSchemaNotSentException

 void notifyDataSchemaNotSentException_Event()
 Notify SE of a DataSchemaNotSentException

 void notifyLoginExceptionEvent()
 Notify SE of a loginException

 void notifyLoginReply(java.lang.Object contactl
ist)

 145

 This method will notify UCM of a
LoginReply.

 void notifyLogoffReply(boolean success)
 This method will notify UCM of a
LogoffReply.

 void notifyMediaInitiatorEnableReply_Event(bool
ean partyRemoved)
 This methods notifies UCM of a
MediaInitiatorEnableReply.

 void notifyNoSessionException_Event(java.lang.S
tring sID)
 Notify SE of a noSessionException

 void notifyPartyAddedReply(boolean partyAdded)
 This methods notifies UCM of a
PartyAddedReply.

 void notifyPartyNotAddedException_Event(java.la
ng.String userID)
 Notify SE of a PartyNotAddedException

 void notifyPartyRemovedReply_Event(boolean part
yRemoved)
 This methods notifies UCM of a
PartyRemovedReply.

 void notifySchemaNotSavedException_Event()
 Notify SE of SchemaNotSavedException

 void notifySendSchemaReply_Event(boolean sendSt
atus)
 This method notifes UCM of a
SendSchemaReply.

 void notifyUnavailableMedia_Event()
 Notify SE of UnavailableMedia

 void notifyUnrecognizedEvent()

 void notifyUserProfileCreatedEvent(UserProfile
usrProfile)
 Event notification function.

 void removeUpListener(Uses_Listener listener)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

 146

Field Detail

listeners
private static java.util.Vector listeners

instance
private static UCMEventObjectManager instance

syncObject_
private static java.lang.Object syncObject_

Constructor Detail

UCMEventObjectManager
private UCMEventObjectManager()

Method Detail

Istance
public static UCMEventObjectManager Istance()

Implementation of the Instance method as in the singleton design pattern.
Returns:

addUpListener
public void addUpListener(Uses_Listener listener)

addDownListener
public void addDownListener(java.util.EventListener listener)

removeUpListener
public void removeUpListener(Uses_Listener listener)

notifyLoginReply
public void notifyLoginReply(java.lang.Object contactlist)

This method will notify UCM of a LoginReply.
Parameters:
contactlist -

notifyLogoffReply
public void notifyLogoffReply(boolean success)

This method will notify UCM of a LogoffReply.
Parameters:
contactlist -

notifyPartyAddedReply
public void notifyPartyAddedReply(boolean partyAdded)

This methods notifies UCM of a PartyAddedReply.

 147

Parameters:
partyAdded -

notifyPartyRemovedReply_Event
public void notifyPartyRemovedReply_Event(boolean partyRemoved)

This methods notifies UCM of a PartyRemovedReply.
Parameters:
partyRemoved -

notifyMediaInitiatorEnableReply_Event
public void notifyMediaInitiatorEnableReply_Event(boolean partyRemoved)

This methods notifies UCM of a MediaInitiatorEnableReply.
Parameters:
partyRemoved -

notifySendSchemaReply_Event
public void notifySendSchemaReply_Event(boolean sendStatus)

This method notifes UCM of a SendSchemaReply.
Parameters:
sendStatus -

notifyConnectionCreatedReply_Event
public void
notifyConnectionCreatedReply_Event(boolean notifyConnectionReply)

This methods notifies UCM of a ConnectionCreatedReply.
Parameters:
notifyConnectionReply -

notifyConnectionDeclinedReply_Event
public void
notifyConnectionDeclinedReply_Event(boolean notifyConnectionReply)

This methods notifies UCM of a ConnectionDeclineReply.
Parameters:
notifyConnectionReply -

notifyUserProfileCreatedEvent
public void notifyUserProfileCreatedEvent(UserProfile usrProfile)

Event notification function. This function wil fire the event to notify the SE.
Parameters:
usrProfile -

notifyLoginExceptionEvent
public void notifyLoginExceptionEvent()

Notify SE of a loginException

 148

notifyNoSessionException_Event
public void notifyNoSessionException_Event(java.lang.String sID)

Notify SE of a noSessionException

notifyPartyNotAddedException_Event
public void notifyPartyNotAddedException_Event(java.lang.String userID)

Notify SE of a PartyNotAddedException

notifyDataSchemaNotSentException_Event
public void notifyDataSchemaNotSentException_Event()

Notify SE of a DataSchemaNotSentException

notifyControlSchemaNotSentException_Event
public void notifyControlSchemaNotSentException_Event()

Notify SE of a ControlSchemaNotSentException

notifyUnavailableMedia_Event
public void notifyUnavailableMedia_Event()

Notify SE of UnavailableMedia

notifySchemaNotSavedException_Event
public void notifySchemaNotSavedException_Event()

Notify SE of SchemaNotSavedException

notifyUnrecognizedEvent
public void notifyUnrecognizedEvent()

fireUpEventUCM
private void fireUpEventUCM(Handles_Event event)

General Event Triger. This method will fire the given event.
Parameters:
event -

cvm.ucm.handlers
Class UCMExceptionHandler
java.lang.Object
 cvm.ucm.handlers.UCMExceptionHandler

public class UCMExceptionHandler
extends java.lang.Object

Field Summary

 149

private
static UCMExceptionHandler

instance

private
static UCMEventObjectManager

ucmEManager

Constructor Summary
private UCMExceptionHandler()

Method Summary
 void handleException(java.lang.Exception e)

 This method will handle all the exception OCL
Statement: Context:
UCMExceptionHandlerr::handleException(e) pre:
e<>null Context:
UCMExceptionHandler::handleException(e) post:
self<> null

static UCMExceptionHandler Instance()
 Implementation of the instance method as in the
Singleton design pattern.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static UCMExceptionHandler instance

ucmEManager
private static UCMEventObjectManager ucmEManager

Constructor Detail

UCMExceptionHandler
private UCMExceptionHandler()

Method Detail

handleException
public void handleException(java.lang.Exception e)

 150

This method will handle all the exception OCL Statement: Context:
UCMExceptionHandlerr::handleException(e) pre: e<>null Context:
UCMExceptionHandler::handleException(e) post: self<> null
Parameters:
e - the exception that will be handled by the handler class

Instance
public static UCMExceptionHandler Instance()

Implementation of the instance method as in the Singleton design pattern.
Returns:
UCMExceptionHandler instnace

cvm.ucm.handlers.event
Class ConnectionCreatedReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.ConnectionCreatedReply_Event
All Implemented Interfaces:

java.io.Serializable

public class ConnectionCreatedReply_Event
extends Handles_Event

This class will represent an event coming from NCB that encapsulate the reply of the
create connection request

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private
 boolean

notifyConnectionReply
 the variable holding whether the connection is created successfully or
not

Fields inherited from class java.util.EventObject
source

Constructor Summary

 151

ConnectionCreatedReply_Event(java.lang.Object eventSource,
boolean notifyConnectionReply)
 The constructor

Method Summary
 boolean getNotifyConnection()

 This method returns whether the connection is created successfully or
not

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

notifyConnectionReply
private boolean notifyConnectionReply

the variable holding whether the connection is created successfully or not

Constructor Detail

ConnectionCreatedReply_Event
public ConnectionCreatedReply_Event(java.lang.Object eventSource,
 boolean notifyConnectionReply)

The constructor
Parameters:
eventSource - the object that fires this event
notifyConnectionReply - containing the result of the create connection request

Method Detail

getNotifyConnection
public boolean getNotifyConnection()

This method returns whether the connection is created successfully or not
Returns:
the result of the create connection request

cvm.ucm.handlers.event
Class ConnectionDeclinedReply_Event
java.lang.Object

 152

 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.ConnectionDeclinedReply_Event
All Implemented Interfaces:

java.io.Serializable

public class ConnectionDeclinedReply_Event
extends Handles_Event

This class will represent an event encapsulate the reply of the decline connection request

Author:
Frank Hernandez

See Also:
Serialized Form

Field Summary
private
 boolean

notifyConnectionReply
 The variable holds whether the connection is declined successfully or
not

Fields inherited from class java.util.EventObject
source

Constructor Summary
ConnectionDeclinedReply_Event(java.lang.Object eventSource,
boolean notifyConnectionReply)
 The constructor

Method Summary
 boolean getNotifyConnection()

 This method returns whether the connection is declined successfully or
not

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

 153

Field Detail

notifyConnectionReply
private boolean notifyConnectionReply

The variable holds whether the connection is declined successfully or not

Constructor Detail

ConnectionDeclinedReply_Event
public ConnectionDeclinedReply_Event(java.lang.Object eventSource,
 boolean notifyConnectionReply)

The constructor
Parameters:
eventSource - the object that fires this event
notifyConnectionReply - containing the result of the declined connection
request

Method Detail

getNotifyConnection
public boolean getNotifyConnection()

This method returns whether the connection is declined successfully or not
Returns:
the result of the create connection request

cvm.ucm.handlers.event
Class Handles_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
All Implemented Interfaces:

java.io.Serializable
Direct Known Subclasses:

ConnectionCreatedReply_Event, ConnectionDeclinedReply_Event,
ControlSchemaNotSentException_Event, DataSchemaNotSentException_Event,
LoginExcetption_Event, MediaInitiatorEnableReply_Event,
NoSessionException_Event, NotifyLoginReply_Event,
NotifyLogoffReply_Event, PartyAddedReply_Event,
PartyNotAddedException_Event, PartyRemovedReply_Event,
SchemaNotSavedException_Event, SendSchemaReply_Event,
UnavailableMedia_Event, UserProfileCreatedEvent

public class Handles_Event
extends java.util.EventObject

 154

This class is the parent class for all classes that represent an event coming up from a
lower level to a higher level

See Also:
Serialized Form

Field Summary

Fields inherited from class java.util.EventObject
source

Constructor Summary
Handles_Event(java.lang.Object eventSource)
 Constructor for Handles_Event

Method Summary

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

Handles_Event
public Handles_Event(java.lang.Object eventSource)

Constructor for Handles_Event
Parameters:
eventSource - the object which would fire this event

cvm.ucm.handlers.event
Class MediaInitiatorEnableReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.MediaInitiatorEnableReply_Event

 155

All Implemented Interfaces:
java.io.Serializable

public class MediaInitiatorEnableReply_Event
extends Handles_Event

This class is usd for notifiying a MediaInitiatorEnableReply_Event to the SE.

Author:
Frank Hernandez

See Also:
Serialized Form

Field Summary
private
 boolean

notifyEnableMediaReply
 the variable holding whether the media is enabled successfully or not

Fields inherited from class java.util.EventObject
source

Constructor Summary
MediaInitiatorEnableReply_Event(java.lang.Object eventSource,
boolean notifyEnableMedia)

Method Summary
 boolean getNotifyMedia()

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

notifyEnableMediaReply
private boolean notifyEnableMediaReply

the variable holding whether the media is enabled successfully or not

 156

Constructor Detail

MediaInitiatorEnableReply_Event
public MediaInitiatorEnableReply_Event(java.lang.Object eventSource,
 boolean notifyEnableMedia)

Method Detail

getNotifyMedia
public boolean getNotifyMedia()

cvm.ucm.handlers.event
Class NotifyLoginReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.NotifyLoginReply_Event
All Implemented Interfaces:

java.io.Serializable

public class NotifyLoginReply_Event
extends Handles_Event

This class will represent an event coming from NCB that encapsulate the reply of the
login request

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.Object
contactList
 The contact list of the logged in user

Fields inherited from class java.util.EventObject
source

Constructor Summary
NotifyLoginReply_Event(java.lang.Object eventSource,
java.lang.Object reply)
 The constructor

 157

Method Summary
 java.lang.Object getContactList()

 This method returns the contact list of the user

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

contactList
private java.lang.Object contactList

The contact list of the logged in user

Constructor Detail

NotifyLoginReply_Event
public NotifyLoginReply_Event(java.lang.Object eventSource,
 java.lang.Object reply)

The constructor
Parameters:
eventSource - the object that fires this event
reply - reply message containing the contact list

Method Detail

getContactList
public java.lang.Object getContactList()

This method returns the contact list of the user
Returns:
the contact list of the user

cvm.ucm.handlers.event
Class NotifyLogoffReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.NotifyLogoffReply_Event
All Implemented Interfaces:

 158

java.io.Serializable

public class NotifyLogoffReply_Event
extends Handles_Event

This event notifies the logoff the system.

Author:
Frank Hernandez

See Also:
Serialized Form

Field Summary
private
 boolean

isLogedoff

Fields inherited from class java.util.EventObject
source

Constructor Summary
NotifyLogoffReply_Event(java.lang.Object eventSource,
boolean isLogedoff)

Method Summary
 boolean isLogedoff()

 Return wether or not logoff was successful.

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

isLogedoff
private boolean isLogedoff

Constructor Detail

 159

NotifyLogoffReply_Event
public NotifyLogoffReply_Event(java.lang.Object eventSource,
 boolean isLogedoff)

Method Detail

isLogedoff
public boolean isLogedoff()

Return wether or not logoff was successful.
Returns:

cvm.ucm.handlers.event
Class PartyAddedReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.PartyAddedReply_Event
All Implemented Interfaces:

java.io.Serializable

public class PartyAddedReply_Event
extends Handles_Event

This class will represent an event coming from NCB that encapsulate the reply of the add
party request

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private
 boolean

notifyPartyAdded
 The variable holding whether the party is added or not

Fields inherited from class java.util.EventObject
source

Constructor Summary
PartyAddedReply_Event(java.lang.Object eventSource,
boolean notifyPartyAdded)
 The constructor

 160

Method Summary
 boolean getNotifyPartyAdded()

 This method returns a value indicating whether the party is added
successfully or not

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

notifyPartyAdded
private boolean notifyPartyAdded

The variable holding whether the party is added or not

Constructor Detail

PartyAddedReply_Event
public PartyAddedReply_Event(java.lang.Object eventSource,
 boolean notifyPartyAdded)

The constructor
Parameters:
eventSource - the object that fires this event
notifyPartyAdded - containing the result of adding the party

Method Detail

getNotifyPartyAdded
public boolean getNotifyPartyAdded()

This method returns a value indicating whether the party is added successfully or
not
Returns:
a boolean value indicating whether the party is added successfully or not

cvm.ucm.handlers.event
Class PartyRemovedReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event

 161

 cvm.ucm.handlers.event.PartyRemovedReply_Event
All Implemented Interfaces:

java.io.Serializable

public class PartyRemovedReply_Event
extends Handles_Event

This class will represent an event coming from NCB that encapsulate the reply of the
remove party request

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private
 boolean

notifyPartyRemovedReply
 The variable holding whether the party is removed or not

Fields inherited from class java.util.EventObject
source

Constructor Summary
PartyRemovedReply_Event(java.lang.Object eventSource,
boolean notifyPartyRemovedReply)
 The constructor

Method Summary
 boolean getNotifyPartyRemoved()

 This method returns a value indicating whether the party is removed
successfully or not

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

 162

notifyPartyRemovedReply
private boolean notifyPartyRemovedReply

The variable holding whether the party is removed or not

Constructor Detail

PartyRemovedReply_Event
public PartyRemovedReply_Event(java.lang.Object eventSource,
 boolean notifyPartyRemovedReply)

The constructor
Parameters:
eventSource - the object that fires this event
notifyPartyRemovedReply - containing the result of removing the party

Method Detail

getNotifyPartyRemoved
public boolean getNotifyPartyRemoved()

This method returns a value indicating whether the party is removed successfully
or not
Returns:
a boolean value indicating whether the party is removed successfully or not

cvm.ucm.handlers.event
Class SendSchemaReply_Event
java.lang.Object
 java.util.EventObject
 cvm.ucm.handlers.event.Handles_Event
 cvm.ucm.handlers.event.SendSchemaReply_Event
All Implemented Interfaces:

java.io.Serializable

public class SendSchemaReply_Event
extends Handles_Event

This class will represent an event coming from NCB that encapsulate the reply of the
sendSchema request

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private sendStatus

 163

 boolean A boolean variable holding if the schema is sent successfully

Fields inherited from class java.util.EventObject
source

Constructor Summary
SendSchemaReply_Event(java.lang.Object eventSource,
boolean sendStatus)
 The constructor

Method Summary
 boolean isSendStatus()

 This method returns the status of the schema sent

Methods inherited from class java.util.EventObject
getSource, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

sendStatus
private boolean sendStatus

A boolean variable holding if the schema is sent successfully

Constructor Detail

SendSchemaReply_Event
public SendSchemaReply_Event(java.lang.Object eventSource,
 boolean sendStatus)

The constructor
Parameters:
eventSource - the object that fires this event
sendStatus - indicating if the status of the sent schema

Method Detail

isSendStatus
public boolean isSendStatus()

This method returns the status of the schema sent
Returns:

 164

the status of the schema sent

cvm.ucm.handlers.exception
Class ControlSchemaNotSentException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.ControlSchemaNotSentException
All Implemented Interfaces:

java.io.Serializable

public class ControlSchemaNotSentException
extends java.lang.Exception

Exception thrown when the control schema passed could not be sent.

Author:
Frank Hernandez

See Also:
Serialized Form

Constructor Summary
ControlSchemaNotSentException()

Method Summary

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

ControlSchemaNotSentException
public ControlSchemaNotSentException()

 165

cvm.ucm.handlers.exception
Class DataNotFoundException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.DataNotFoundException
All Implemented Interfaces:

java.io.Serializable

public class DataNotFoundException
extends java.lang.Exception

The DataNotFoundException is thrown when the program tries to send a file or a form
that is not found

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.String
dataName
 The name of the data which could not be found

Constructor Summary
DataNotFoundException(java.lang.String name)

Method Summary
 java.lang.String getDataName()

 This method returns the name of the file or form

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,

 166

wait, wait

Field Detail

dataName
private java.lang.String dataName

The name of the data which could not be found

Constructor Detail

DataNotFoundException
public DataNotFoundException(java.lang.String name)

Method Detail

getDataName
public java.lang.String getDataName()

This method returns the name of the file or form
Returns:
the name of the file or form

cvm.ucm.handlers.exception
Class DataSchemaNotSentException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.DataSchemaNotSentException
All Implemented Interfaces:

java.io.Serializable

public class DataSchemaNotSentException
extends java.lang.Exception

Exception thrown when the data schema passed could not be sent.

Author:
Frank Hernandez

See Also:
Serialized Form

Constructor Summary
DataSchemaNotSentException()

 167

Method Summary

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

DataSchemaNotSentException
public DataSchemaNotSentException()

cvm.ucm.handlers.exception
Class IllegalMacroArgumentException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.IllegalMacroArgumentException
All Implemented Interfaces:

java.io.Serializable

public class IllegalMacroArgumentException
extends java.lang.Exception

This class represents the exception thrown by the macro interpreter when an illegal
argument is encountered

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.String
argName
 the name of the argument that courses this exception

private
 java.lang.String macroName

 168

 the name of the macro that encounters an unexpected
argument

Constructor Summary
IllegalMacroArgumentException(java.lang.String macro,
java.lang.String arg)

Method Summary
 java.lang.String getIllegalArgument()

 This method returns the name of the argument
 java.lang.String getMacroName()

 This method returns the name of the macro

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

macroName
private java.lang.String macroName

the name of the macro that encounters an unexpected argument

argName
private java.lang.String argName

the name of the argument that courses this exception

Constructor Detail

IllegalMacroArgumentException
public IllegalMacroArgumentException(java.lang.String macro,
 java.lang.String arg)

Method Detail

getMacroName
public java.lang.String getMacroName()

This method returns the name of the macro

 169

Returns:
the name of the macro that encounters an unexpected argument

getIllegalArgument
public java.lang.String getIllegalArgument()

This method returns the name of the argument
Returns:
the name of the argument that courses this exception

cvm.ucm.handlers.exception
Class InvalidScriptException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.InvalidScriptException
All Implemented Interfaces:

java.io.Serializable

public class InvalidScriptException
extends java.lang.Exception

This class represents the exception thrown by the script interpreter when an invalid script
is encountered

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.String
scriptName
 the name of the script that has invalid syntax

Constructor Summary
InvalidScriptException(java.lang.String name)

Method Summary
 java.lang.String getscriptName()

 This method returns the name of the invalid script

 170

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

scriptName
private java.lang.String scriptName

the name of the script that has invalid syntax

Constructor Detail

InvalidScriptException
public InvalidScriptException(java.lang.String name)

Method Detail

getscriptName
public java.lang.String getscriptName()

This method returns the name of the invalid script
Returns:
the name of the invalid script

cvm.ucm.handlers.exception
Class LoginException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.LoginException
All Implemented Interfaces:

java.io.Serializable

public class LoginException
extends java.lang.Exception

Exception thrown when the login fails.

Author:
Frank Hernandez

 171

See Also:
Serialized Form

Constructor Summary
LoginException()

Method Summary

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

LoginException
public LoginException()

cvm.ucm.handlers.exception
Class MacroNotFoundException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.MacroNotFoundException
All Implemented Interfaces:

java.io.Serializable

public class MacroNotFoundException
extends java.lang.Exception

This class represents the exception thrown by the macro loader when a given macro could
not be found in the repository

Author:
Guangqiang Zhao

See Also:

 172

Serialized Form

Field Summary
private

 java.lang.String
macroName
 the name of the missed macro

Constructor Summary
MacroNotFoundException(java.lang.String macro)

Method Summary
 java.lang.String getMacroName()

 This method returns the name of the missed macro

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

macroName
private java.lang.String macroName

the name of the missed macro

Constructor Detail

MacroNotFoundException
public MacroNotFoundException(java.lang.String macro)

Method Detail

getMacroName
public java.lang.String getMacroName()

This method returns the name of the missed macro
Returns:
name of the missed macro

 173

cvm.ucm.handlers.exception
Class NoSessionException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.NoSessionException
All Implemented Interfaces:

java.io.Serializable

public class NoSessionException
extends java.lang.Exception

The NoSessionException is thrown when the program tries to add parties or send data in
a connection that has no corresponding physical sessions

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.String
connID
 the connection ID which has not physical session in the
NCB layer

Constructor Summary
NoSessionException(java.lang.String ID)

Method Summary
 java.lang.String getConnectionID()

 This method returns the connection ID

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,

 174

wait, wait

Field Detail

connID
private java.lang.String connID

the connection ID which has not physical session in the NCB layer

Constructor Detail

NoSessionException
public NoSessionException(java.lang.String ID)

Method Detail

getConnectionID
public java.lang.String getConnectionID()

This method returns the connection ID
Returns:
the connection ID that missed a physical session in the low layer

cvm.ucm.handlers.exception
Class PartyNotAddedException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.PartyNotAddedException
All Implemented Interfaces:

java.io.Serializable

public class PartyNotAddedException
extends java.lang.Exception

This exception occurs when the adding of a party fails.

Author:
Frank Hernandez

See Also:
Serialized Form

Field Summary
private

 java.lang.String
partyName
 the name of the participant that coursed this exception

 175

Constructor Summary
PartyNotAddedException(java.lang.String name)

Method Summary
 java.lang.String getPartyName()

 This method returns the name of the participant

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

partyName
private java.lang.String partyName

the name of the participant that coursed this exception

Constructor Detail

PartyNotAddedException
public PartyNotAddedException(java.lang.String name)

Method Detail

getPartyName
public java.lang.String getPartyName()

This method returns the name of the participant
Returns:
the name of the participant

cvm.ucm.handlers.exception
Class PartyNotFoundException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.PartyNotFoundException

 176

All Implemented Interfaces:
java.io.Serializable

public class PartyNotFoundException
extends java.lang.Exception

This class represents an exception that is thrown when the program tries to remove a
party that is not in the connection

Author:
Guangqiang Zhao

See Also:
Serialized Form

Field Summary
private

 java.lang.String
partyName
 the name of the participant that coursed this exception

Constructor Summary
PartyNotFoundException(java.lang.String name)

Method Summary
 java.lang.String getPartyName()

 This method returns the name of the participant

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

partyName
private java.lang.String partyName

the name of the participant that coursed this exception

Constructor Detail

 177

PartyNotFoundException
public PartyNotFoundException(java.lang.String name)

Method Detail

getPartyName
public java.lang.String getPartyName()

This method returns the name of the participant
Returns:
the name of the participant

cvm.ucm.handlers.exception
Class SchemaNotSavedException
java.lang.Object
 java.lang.Throwable
 java.lang.Exception
 cvm.ucm.handlers.exception.SchemaNotSavedException
All Implemented Interfaces:

java.io.Serializable

public class SchemaNotSavedException
extends java.lang.Exception

Exception thrown when the schema could not be saved.

Author:
Frank Hernandez

See Also:
Serialized Form

Constructor Summary
SchemaNotSavedException()

Method Summary

Methods inherited from class java.lang.Throwable
fillInStackTrace, getCause, getLocalizedMessage, getMessage,
getStackTrace, initCause, printStackTrace, printStackTrace,
printStackTrace, setStackTrace, toString

Methods inherited from class java.lang.Object

 178

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

SchemaNotSavedException
public SchemaNotSavedException()

cvm.ucm.interpreter
Interface Command
All Known Implementing Classes:

MacroCommand

public interface Command

Command Interface This is the command interface as in the Command Design Patern
from GoF.

Author:
Frank Hernandez

Method Summary
 void execute()

Method Detail

execute
void execute()
 throws java.lang.Exception

Throws:
java.lang.Exception

cvm.ucm.interpreter
Class EnvVariable
java.lang.Object
 cvm.ucm.interpreter.EnvVariable

public class EnvVariable
extends java.lang.Object

 179

This class is used to hold the 'enviroment variables' needed by the macro to execute. For a
macro to use a system variable in the system it must know the variable name as in the
macro, the variable type (full declaration i.e. Java.lang.util.String) and the variable value
(the variable name as seen in the class).

Author:
Frank Hernandez

Field Summary
private

 java.lang.String
typeName

private
 java.lang.String

varName

private
 java.lang.Object

varValue

Constructor Summary
EnvVariable(java.lang.String varName, java.lang.String typeName,
java.lang.Object varValue)
 Creates a new enviroment variable object.

Method Summary
 java.lang.String getParamName()

 This method returns the name of the variable as seen inside
the macro.

 java.lang.String getParamType()
 This method returns the full classification of the variable.

 java.lang.Object getParamValue()
 This method returns the value to be given to the variable
inside the macro.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

varName
private java.lang.String varName

 180

typeName
private java.lang.String typeName

varValue
private java.lang.Object varValue

Constructor Detail

EnvVariable
public EnvVariable(java.lang.String varName,
 java.lang.String typeName,
 java.lang.Object varValue)

Creates a new enviroment variable object.
Parameters:
varName -
typeName -
varValue -

Method Detail

getParamName
public java.lang.String getParamName()

This method returns the name of the variable as seen inside the macro.
Returns:
variable name as seen in the macro.

getParamType
public java.lang.String getParamType()

This method returns the full classification of the variable.
Returns:
type name of the variable i.e. 'cvm.ncb.NetworkCommunicationBroker'

getParamValue
public java.lang.Object getParamValue()

This method returns the value to be given to the variable inside the macro. That is
the variable as used inside the system.
Returns:
the value to be given to the variable inside the macro.

cvm.ucm.interpreter
Class MacroCommand
java.lang.Object
 cvm.ucm.interpreter.MacroCommand
All Implemented Interfaces:

Command

 181

public class MacroCommand
extends java.lang.Object
implements Command

Command Encapsulation for Macro execution. The MacroCommand will incapsulate a
Macro for later execution. The Macro comes in the form of a MacroNode that contains a
ScriptInterpreter and the list of values to execute.

Author:
Frank Hernandez

See Also:
MacroNode

Field Summary
private

 java.lang.String
macroName

private MacroNode myMacro

private
 UCMExceptionHandler

ucmException

Constructor Summary
MacroCommand(MacroNode node, java.lang.String sName)

Method Summary
 void execute()

 This is the implementation of the Command execute method.
 java.lang.String getName()

 Retruens the Name of the Macro to Execute.
 MacroNode getNode()

 Returns the Macro Node.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

 182

myMacro
private MacroNode myMacro

macroName
private java.lang.String macroName

ucmException
private UCMExceptionHandler ucmException

Constructor Detail

MacroCommand
public MacroCommand(MacroNode node,
 java.lang.String sName)

Method Detail

execute
public void execute()
 throws java.lang.Exception

This is the implementation of the Command execute method. This method
executes the Command by evalueting the ScriptInterpreter inside the MacroNode
with the parameter values.
Specified by:
execute in interface Command
Throws:
java.lang.Exception
See Also:
MacroNode

getNode
public MacroNode getNode()

Returns the Macro Node.

getName
public java.lang.String getName()

Retruens the Name of the Macro to Execute.
Returns:

cvm.ucm.interpreter
Class MacroInterpreter
java.lang.Object
 cvm.ucm.interpreter.MacroInterpreter

public class MacroInterpreter
extends java.lang.Object

 183

MacroInterpreter encapsulates the creation of a script evaluator object which will be
executed using Janino inside the MacroCommand execute. The main purpose of this class
is to receive a collection of parameter values and a macro object, which will contain
parsed macro information. The MacroInterpreter will then encapsulate the data in a
MacroNode for later execution.

Author:
Raidel Batista

See Also:
ScriptEvaluator, MacroNode, MacroCommand

Constructor Summary
MacroInterpreter()

Method Summary
protected
 MacroNode

interpretMacro(Macro repoMacro,
java.util.ArrayList paramValuesArr,
java.util.ArrayList<EnvVariable> envVars)
 The main purpose of this method is to receive a collection of
parameter values and a macro object, which will contain parsed macro
information.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Constructor Detail

MacroInterpreter
public MacroInterpreter()

Method Detail

interpretMacro
protected MacroNode interpretMacro(Macro repoMacro,
 java.util.ArrayList paramValuesArr,

java.util.ArrayList<EnvVariable> envVars)
 throws java.lang.NoSuchMethodException,
 java.lang.InstantiationException,

java.lang.reflect.InvocationTargetException,
 java.lang.IllegalAccessException,

org.codehaus.janino.CompileException,

 184

org.codehaus.janino.Parser.ParseException,

org.codehaus.janino.Scanner.ScanException

The main purpose of this method is to receive a collection of parameter values
and a macro object, which will contain parsed macro information. The
MacroInterpreter will then encapsulate the data in a MacroNode for later
execution.
Parameters:
repoMacro -
paramValues -
sEngine -
ncb -
Returns:
A MacroNode to be used in the creation of a MacroCommand
Throws:
java.lang.NoSuchMethodException
java.lang.InstantiationException
java.lang.reflect.InvocationTargetException
java.lang.IllegalAccessException
org.codehaus.janino.CompileException
org.codehaus.janino.Parser.ParseException
org.codehaus.janino.Scanner.ScanException

cvm.ucm.interpreter
Class MacroNode
java.lang.Object
 cvm.ucm.interpreter.MacroNode

public class MacroNode
extends java.lang.Object

MacroNode class This class encapsulates all the data needed for the execution of the
ScriptEvaluator object. There is one MacroNode per macro to be executed.

Author:
Frank Hernandez

See Also:
ScriptEvaluator

Field Summary
private

 org.codehaus.janino.ScriptEvaluator
mySE

private java.lang.Object[] paramVals

 185

Constructor Summary
MacroNode(org.codehaus.janino.ScriptEvaluator se,
java.lang.Object[] params)

Method Summary
 java.lang.Object[] getParameterValues()

 This accessor method returns
Returns the array of parameter values.

 org.codehaus.janino.ScriptEvaluator getSE()
 This accessor method returns a
ScrpitEvaluator object.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

mySE
private org.codehaus.janino.ScriptEvaluator mySE

paramVals
private java.lang.Object[] paramVals

Constructor Detail

MacroNode
public MacroNode(org.codehaus.janino.ScriptEvaluator se,
 java.lang.Object[] params)

Method Detail

getSE
public org.codehaus.janino.ScriptEvaluator getSE()

This accessor method returns a ScrpitEvaluator object.
Returns:
ScrpitEvaluator object
See Also:
ScriptEvaluator

getParameterValues
public java.lang.Object[] getParameterValues()

This accessor method returns Returns the array of parameter values.

 186

Returns:
array of parameter value;

cvm.ucm.interpreter
Class Parser
java.lang.Object
 cvm.ucm.interpreter.Parser

public class Parser
extends java.lang.Object

This class parses the control scripts that are passed down from the Synthesis Engine and
puts them in a data structure that is easier to handle and understand.

Author:
Eduardo Monteiro

Field Summary
private

 java.io.BufferedReader
reader

Constructor Summary
Parser()

Method Summary
private java.lang.String getFunctionName(java.lang.String line)

 Gets the function name of a given line of the
control script.

private
 java.util.ArrayList

getParmTypes(java.lang.String line)
 Gets a list of parameter types from a function in a
given line of the control script

private
 java.util.ArrayList

getParmValues(java.lang.String line)
 Gets a list of parameter values from a function in
a given line of the control script

private java.lang.String getReturnType(java.lang.String line)
 Gets the return type of a function in a given line
of the control script

static void main(java.lang.String[] args)

 187

static java.util.ArrayList makeList(java.lang.String stringList)

 Script parse(java.lang.String script)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

reader
private java.io.BufferedReader reader

Constructor Detail

Parser
public Parser()

Method Detail

makeList
public static java.util.ArrayList makeList(java.lang.String stringList)

parse
public Script parse(java.lang.String script)
 throws InvalidScriptException

Parameters:
String - representing the control script
Returns:
Script object containing the parsed control script
Throws:
InvalidScriptException

getFunctionName
private java.lang.String getFunctionName(java.lang.String line)

Gets the function name of a given line of the control script.
Parameters:
String - representing one line of the parsed control script
Returns:
String representing the function name.

getReturnType
private java.lang.String getReturnType(java.lang.String line)

Gets the return type of a function in a given line of the control script

 188

Parameters:
String - representing one line of the parsed control script
Returns:
String representing the return type.

getParmTypes
private java.util.ArrayList getParmTypes(java.lang.String line)

Gets a list of parameter types from a function in a given line of the control script
Parameters:
String - representing one line of the parsed control script
Returns:
ArrayList with the parameter types.

getParmValues
private java.util.ArrayList getParmValues(java.lang.String line)

Gets a list of parameter values from a function in a given line of the control script
Parameters:
String - representing one line of the parsed control script
Returns:
ArrayList with the parameter values.

cvm.ucm.interpreter
Class Script
java.lang.Object
 cvm.ucm.interpreter.Script

public class Script
extends java.lang.Object

Data structure that holds a control script in memory.

Author:
Eduardo Monteiro

Nested Class Summary
 class Script.Call

 Call holds function calls in a given control script.

Field Summary
private

 java.util.ArrayList
callList

private
 java.util.Iterator

itr

 189

Constructor Summary
Script()
 Constructor

Method Summary
 boolean add(java.lang.String functionName,

java.lang.String returnType,
java.util.ArrayList parmTypes,
java.util.ArrayList parmValues)
 Adds a new call to the script data structure.

 Script.Call getNextCall()
 Retrieves the next available call in the control script.

 boolean hasNext()
 Checks if the script has any more function calls.

 java.lang.String toString()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

callList
private java.util.ArrayList callList

itr
private java.util.Iterator itr

Constructor Detail

Script
public Script()

Constructor

Method Detail

hasNext
public boolean hasNext()

Checks if the script has any more function calls.
Returns:
True if script has more calls, False otherwise.

 190

getNextCall
public Script.Call getNextCall()

Retrieves the next available call in the control script.
Returns:
Call object representing the next available function call.

add
public boolean add(java.lang.String functionName,
 java.lang.String returnType,
 java.util.ArrayList parmTypes,
 java.util.ArrayList parmValues)

Adds a new call to the script data structure.
Parameters:
String - functionName, name of the function
String - returnType, return type of the function
ArrayList - parmTypes, function parameter types
ArrayList - parmValues, function parameter values
Returns:
True if added successfuly, False otherwise.

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

cvm.ucm.interpreter
Class UCM_I_Facade
java.lang.Object
 cvm.ucm.interpreter.UCM_I_Facade

public class UCM_I_Facade
extends java.lang.Object

Façade class that provides an interface into the UCM_Interpreter subsystem. The purpose
of this class is to aid future expansion of this subsystem. OCL Statement: Context:
UCM_I_Facade inv: ucmAdapter<>null

Author:
Frank Hernandez

Field Summary
private

 UCM_Interpreter_Adapter
ucmAdapter

 191

Constructor Summary
UCM_I_Facade()

Method Summary
 void attachNCB(NetworkCommunicationBroker thisNcb)

 Attaches the NCB instance to the CM_Interepreter_Mk.
 void attachSynthesisEngine(SynthesisEngine thisSE)

 Attaches the SynthesisEngine intance to the CM_Interepreter_Mk.
 void executeNext()

 This method singals the Microkernel to continue and execute the next
command.

 void parseScript(java.lang.String script)
 This method executes a control scipt received from the SynthesisEngine.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

ucmAdapter
private UCM_Interpreter_Adapter ucmAdapter

Constructor Detail

UCM_I_Facade
public UCM_I_Facade()

Method Detail

parseScript
public void parseScript(java.lang.String script)

This method executes a control scipt received from the SynthesisEngine. OCL
Statement: Context: UCM_I_Facade::parseScript(script, se,ncb) pre:
script.length>0 and se<>null and ncb<>nul Context:
UCM_I_Facade::parseScript(script, se,ncb) post: ucmAdapter<>null
Parameters:
script -
se -
ncb -
Throws:
org.codehaus.janino.CompileException

 192

org.codehaus.janino.Parser.ParseException
org.codehaus.janino.Scanner.ScanException
java.lang.NoSuchMethodException
java.lang.InstantiationException
java.lang.reflect.InvocationTargetException
java.lang.IllegalAccessException

attachNCB
public void attachNCB(NetworkCommunicationBroker thisNcb)

Attaches the NCB instance to the CM_Interepreter_Mk.
Parameters:
thisNcb -

attachSynthesisEngine
public void attachSynthesisEngine(SynthesisEngine thisSE)

Attaches the SynthesisEngine intance to the CM_Interepreter_Mk.
Parameters:
thisSE -

executeNext
public void executeNext()

This method singals the Microkernel to continue and execute the next command.

cvm.ucm.interpreter
Class UCM_Interepreter_Mk
java.lang.Object
 cvm.ucm.interpreter.UCM_Interepreter_Mk

public class UCM_Interepreter_Mk
extends java.lang.Object

This is the microkernel as in the architecture pattern. This class control the parsing of
scripts, the loading of macros, and the queuing and execution of commands.

Author:
Frank Hernandez

Field Summary
private java.util.Queue<MacroCommand> commandQueue

private java.util.ArrayList<EnvVariable> envVars

private static UCM_Interepreter_Mk instance

 193

private java.util.Iterator itr

private NetworkCommunicationBroker ncb

private NCBEventObjectManager ncbNotifier

private Parser scriptParser

private SynthesisEngine se

private

 java.util.Map<java.lang.String,java.lang.String>
ucmConnMap

private UCMEventHandler ucmEHandler

private UCMEventObjectManager ucmNotifier

private UCMExceptionHandler ucmXHandler

Constructor Summary
private UCM_Interepreter_Mk()

Method Summary
 void attachNCB(NetworkCommunicationBroker thisNcb)

 Attaches the NCB instance to the
CM_Interepreter_Mk.

 void attachSynthesisEngine(SynthesisEngine thisSE)
 Attaches the SynthesisEngine intance to the
CM_Interepreter_Mk.

 void executeNextCommand()
 This method excecutes the next command in line.

static UCM_Interepreter_Mk Instance()
 This is the Instance implementation of Singleton
Design Pattern.

 void parseScript(java.lang.String script)
 This method parses and executes a control scipt
received from the SynthesisEngine.

 194

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static UCM_Interepreter_Mk instance

scriptParser
private Parser scriptParser

commandQueue
private java.util.Queue<MacroCommand> commandQueue

envVars
private java.util.ArrayList<EnvVariable> envVars

ncb
private NetworkCommunicationBroker ncb

se
private SynthesisEngine se

ucmNotifier
private UCMEventObjectManager ucmNotifier

ncbNotifier
private NCBEventObjectManager ncbNotifier

ucmXHandler
private UCMExceptionHandler ucmXHandler

ucmEHandler
private UCMEventHandler ucmEHandler

ucmConnMap
private java.util.Map<java.lang.String,java.lang.String> ucmConnMap

itr
private java.util.Iterator itr

Constructor Detail

 195

UCM_Interepreter_Mk
private UCM_Interepreter_Mk()

Method Detail

parseScript
public void parseScript(java.lang.String script)

This method parses and executes a control scipt received from the
SynthesisEngine.
Parameters:
script -
se -
ncb -
Throws:
org.codehaus.janino.CompileException
org.codehaus.janino.Parser.ParseException
org.codehaus.janino.Scanner.ScanException
java.lang.NoSuchMethodException
java.lang.InstantiationException
java.lang.reflect.InvocationTargetException
java.lang.IllegalAccessException

Instance
public static UCM_Interepreter_Mk Instance()

This is the Instance implementation of Singleton Design Pattern.
Returns:
An instance of UCM_Interepreter_Mk

attachNCB
public void attachNCB(NetworkCommunicationBroker thisNcb)

Attaches the NCB instance to the CM_Interepreter_Mk.
Parameters:
thisNcb -

attachSynthesisEngine
public void attachSynthesisEngine(SynthesisEngine thisSE)

Attaches the SynthesisEngine intance to the CM_Interepreter_Mk.
Parameters:
thisSE -

executeNextCommand
public void executeNextCommand()

This method excecutes the next command in line. Used for steping command
Macro execution.
See Also:
MacroCommand

 196

cvm.ucm.interpreter
Class UCM_Interpreter_Adapter
java.lang.Object
 cvm.ucm.interpreter.UCM_Interpreter_Adapter

public class UCM_Interpreter_Adapter
extends java.lang.Object

Adapter class as in the microkernel architecture pattern. It makes the parse script requests
to the UCM_Interepreter_Mk class.

Author:
Frank Hernandez

Field Summary
private

static UCM_Interpreter_Adapter
instance

private
static UCM_Interepreter_Mk

ucmMk

Constructor Summary
private UCM_Interpreter_Adapter()

Method Summary
 void attachNCB(NetworkCommunicationBroker thisNcb)

 Attaches the NCB instance to the
CM_Interepreter_Mk.

 void attachSynthesisEngine(SynthesisEngine thisSE)
 Attaches the SynthesisEngine intance to the
CM_Interepreter_Mk.

 void executeNext()
 This method singals the Microkernel to continue
and execute the next command.

static UCM_Interpreter_Adapter Instance()
 This is the Instance implementation of Singleton
Design Pattern.

 void parseScript(java.lang.String script)
 This method parses and executes a control scipt
received from the SynthesisEngine.

 197

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static UCM_Interpreter_Adapter instance

ucmMk
private static UCM_Interepreter_Mk ucmMk

Constructor Detail

UCM_Interpreter_Adapter
private UCM_Interpreter_Adapter()

Method Detail

parseScript
public void parseScript(java.lang.String script)

This method parses and executes a control scipt received from the
SynthesisEngine.
Parameters:
script -
se -
ncb -
Throws:
org.codehaus.janino.CompileException
org.codehaus.janino.Parser.ParseException
org.codehaus.janino.Scanner.ScanException
java.lang.NoSuchMethodException
java.lang.InstantiationException
java.lang.reflect.InvocationTargetException
java.lang.IllegalAccessException

Instance
public static UCM_Interpreter_Adapter Instance()

This is the Instance implementation of Singleton Design Pattern.
Returns:
An instance of UCM_Interpreter_Adapter

attachNCB
public void attachNCB(NetworkCommunicationBroker thisNcb)

Attaches the NCB instance to the CM_Interepreter_Mk.
Parameters:
thisNcb -

 198

attachSynthesisEngine
public void attachSynthesisEngine(SynthesisEngine thisSE)

Attaches the SynthesisEngine intance to the CM_Interepreter_Mk.
Parameters:
thisSE -

executeNext
public void executeNext()

This method singals the Microkernel to continue and execute the next command.

cvm.ucm.manager
Class UCM_M_Facade
java.lang.Object
 cvm.ucm.manager.UCM_M_Facade

public class UCM_M_Facade
extends java.lang.Object

Façade class that provides an interface into the UCM_Manager subsystem. The purpose
of this class is to aid future expansion of this subsystem. OCL Statement: Context:
UCM_M_Facade inv: ucmManager<>null

Author:
Frank Hernandez

Field Summary
private

static UCM_M_Facade
instance

private UCMManager manager

Constructor Summary
private UCM_M_Facade(SynthesisEngine se,

NetworkCommunicationBroker ncb)

Method Summary
 void executeScript(java.lang.String script)

 This method executes a control scipt received from the

 199

SynthesisEngine.
static UCM_M_Facade Instance(SynthesisEngine se,

NetworkCommunicationBroker ncb)

static void main(java.lang.String[] args)
 Testing Manager Facade Class - Unit Test

static void notifyEvent(Handles_Event event)
 Notifies the occurance of an even.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

manager
private UCMManager manager

instance
private static UCM_M_Facade instance

Constructor Detail

UCM_M_Facade
private UCM_M_Facade(SynthesisEngine se,
 NetworkCommunicationBroker ncb)

Method Detail

Instance
public static UCM_M_Facade Instance(SynthesisEngine se,
 NetworkCommunicationBroker ncb)

notifyEvent
public static void notifyEvent(Handles_Event event)

Notifies the occurance of an even. OCL Statement: Context:
UCM_M_Facade::notifyEvent(event) pre: event <> null Context:
UCM_M_Facade::notifyEvent(event) post: ucmManager<>null
Parameters:
event - event to handle

executeScript
public void executeScript(java.lang.String script)

This method executes a control scipt received from the SynthesisEngine. OCL
Statement: Context: UCM_M_Facade::executeScript(script) pre: script.length>0
Context: UCM_M_Facade::executeScript(script) post: ucmManager<>null

 200

Parameters:
script - to parse.

main
public static void main(java.lang.String[] args)

Testing Manager Facade Class - Unit Test
Parameters:
args -

cvm.ucm.manager
Class UCMManager
java.lang.Object
 cvm.ucm.manager.UCMManager

public class UCMManager
extends java.lang.Object

Controls the work flow inside the UCM system. This class also notifies the overlying
system of any event that are specific to it.

Author:
Frank Hernandez

Field Summary
private static UCMManager instance

private static UCM_I_Facade interpreterF

private

static NetworkCommunicationBroker
ncb

private static SynthesisEngine se

Constructor Summary
private UCMManager()

Method Summary
 void attachNCB(NetworkCommunicationBroker thisNcb)

 201

 Attaches the NCB instance to the UCMManager.
 void attachSynthesisEngine(SynthesisEngine thisSE)

 Attaches the SynthesisEngine intance to the UCMManager.
 void executeScript(java.lang.String script)

 This method executes a control scipt received from the
SynthesisEngine.

static UCMManager Instance()
 This is the Instance implementation of Singleton Design
Pattern.

static void notifyEvent(Handles_Event event)
 Notifies the occurance of an even.

static void notifySEEvent(Handles_Event e)
 Notifies the SE of an event.

private
static void

stepExecution()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static UCMManager instance

ncb
private static NetworkCommunicationBroker ncb

se
private static SynthesisEngine se

interpreterF
private static UCM_I_Facade interpreterF

Constructor Detail

UCMManager
private UCMManager()

Method Detail

Instance
public static UCMManager Instance()

This is the Instance implementation of Singleton Design Pattern.
Returns:

 202

UCMManager instance

notifyEvent
public static void notifyEvent(Handles_Event event)

Notifies the occurance of an even.
Parameters:
event -

notifySEEvent
public static void notifySEEvent(Handles_Event e)

Notifies the SE of an event.
Parameters:
e -

stepExecution
private static void stepExecution()

executeScript
public void executeScript(java.lang.String script)

This method executes a control scipt received from the SynthesisEngine.
Parameters:
script -
Throws:
org.codehaus.janino.CompileException
org.codehaus.janino.Parser.ParseException
org.codehaus.janino.Scanner.ScanException
java.lang.NoSuchMethodException
java.lang.InstantiationException
java.lang.reflect.InvocationTargetException
java.lang.IllegalAccessException

attachNCB
public void attachNCB(NetworkCommunicationBroker thisNcb)

Attaches the NCB instance to the UCMManager.
Parameters:
thisNcb -

attachSynthesisEngine
public void attachSynthesisEngine(SynthesisEngine thisSE)

Attaches the SynthesisEngine intance to the UCMManager.
Parameters:
thisSE -

 203

cvm.ucm.model
Class Macro
java.lang.Object
 cvm.ucm.model.Macro

public class Macro
extends java.lang.Object

This class encapsulates all the data specific to any macro. This object simplifies the
transfer of information across subsystems dealing with macros.

Author:
Frank Hernandez

Field Summary
private

 java.lang.String
name

private
 java.util.ArrayList

paramNameList

private
 java.util.ArrayList

paramTypeList

private
 java.lang.String

returnType

private
 java.lang.String

script

private
 java.util.ArrayList

thrownExceptions

Constructor Summary
Macro()

Method Summary
 java.lang.String getName()

 This method returns the name of the macro
 java.util.ArrayLis

t
getParamNameList()
 This method returns a list containing the name of the
parameters inside a macro.

 java.util.ArrayLis
t

getParamTypeList()
 This method returns a list containing the types of all the
parameters in a macro.

 204

 java.lang.String getReturnType()
 This method returns the return type of a macro.

 java.lang.String getScript()
 This function returns a string representation of a script.

 java.util.ArrayLis
t

getThrownExceptions()
 Returns the list of thrown exceptions.

 void setName(java.lang.String name)
 This sets the name of the macro.

 void setParamNameList(java.util.ArrayList paramNameList)
 This method sets the list of parameter names.

 void setParamTypeList(java.util.ArrayList paramTypeList)
 This method set the list of parameters types of a macro.

 void setReturnType(java.lang.String returnType)
 This method sets the return type of a macro.

 void setScript(java.lang.String script)
 Sets the execution section of a macro.

 void setThrownExceptions(java.util.ArrayList thrownExcep
tions)
 Assignes the list of thrown excpetions.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

paramNameList
private java.util.ArrayList paramNameList

paramTypeList
private java.util.ArrayList paramTypeList

thrownExceptions
private java.util.ArrayList thrownExceptions

script
private java.lang.String script

returnType
private java.lang.String returnType

name
private java.lang.String name

 205

Constructor Detail

Macro
public Macro()

Method Detail

getParamNameList
public java.util.ArrayList getParamNameList()

This method returns a list containing the name of the parameters inside a macro.
Returns:
List of Macro Parameter Names

setParamNameList
public void setParamNameList(java.util.ArrayList paramNameList)

This method sets the list of parameter names.
Parameters:
paramNameList -

getParamTypeList
public java.util.ArrayList getParamTypeList()

This method returns a list containing the types of all the parameters in a macro.
Returns:
List of type of parameters.

setParamTypeList
public void setParamTypeList(java.util.ArrayList paramTypeList)

This method set the list of parameters types of a macro.
Parameters:
paramTypeList -

getScript
public java.lang.String getScript()

This function returns a string representation of a script. That is it retuns the
execution section of a macro in string format.
Returns:
String contining the execution section of a macro.

setScript
public void setScript(java.lang.String script)

Sets the execution section of a macro.
Parameters:
script -

getReturnType
public java.lang.String getReturnType()

 206

This method returns the return type of a macro.
Returns:
The return type of the macro.

setReturnType
public void setReturnType(java.lang.String returnType)

This method sets the return type of a macro.
Parameters:
returnType -

getName
public java.lang.String getName()

This method returns the name of the macro
Returns:
Name of the macro.

setName
public void setName(java.lang.String name)

This sets the name of the macro.
Parameters:
name -

setThrownExceptions
public void setThrownExceptions(java.util.ArrayList thrownExceptions)

Assignes the list of thrown excpetions.
Parameters:
thrownExceptions -

getThrownExceptions
public java.util.ArrayList getThrownExceptions()

Returns the list of thrown exceptions.
Returns:

cvm.ucm.repository
Interface Sources
All Known Implementing Classes:

SourceDBLoader, SourceFileSysLoader

public interface Sources

Interface to Source loaders

 207

Method Summary
 Macro loader(java.lang.String name)

Method Detail

loader
Macro loader(java.lang.String name)
 throws java.lang.Exception

Throws:
java.lang.Exception

cvm.ucm.repository
Class MacroLoader
java.lang.Object
 cvm.ucm.repository.MacroLoader

public class MacroLoader
extends java.lang.Object

The MacroLoader class retrieves, from a given Source (a Database, a File System, etc),
the information necessary and creates a Macro.

Author:
Abhishek B. and Marylurdys H.

Field Summary
(package
private)
 Sources

s

Constructor Summary
MacroLoader(Sources s)

Method Summary
 Macro loadMacro(java.lang.String name)

 loadMacro creates a Macro object with the information obtained from the
source for a given function name

 208

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

s
Sources s

Constructor Detail

MacroLoader
public MacroLoader(Sources s)

Method Detail

loadMacro
public Macro loadMacro(java.lang.String name)
 throws java.lang.Exception

loadMacro creates a Macro object with the information obtained from the source
for a given function name
Parameters:
name: - the name of the function whose macro is required
Returns:
Macro object
Throws:
java.lang.Exception
See Also:
Macro

cvm.ucm.repository
Class MSAccessConnection
java.lang.Object
 cvm.ucm.repository.MSAccessConnection

public class MSAccessConnection
extends java.lang.Object

Field Summary
private

 java.sql.Connection
conn

private
static java.lang.String

driver

private password

 209

 java.lang.String
private

 java.lang.String
url

private
 java.lang.String

username

Constructor Summary
MSAccessConnection(Rep_Properties prop)

Method Summary
 java.sql.Connection getConn()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

username
private java.lang.String username

password
private java.lang.String password

url
private java.lang.String url

driver
private static java.lang.String driver

conn
private java.sql.Connection conn

Constructor Detail

MSAccessConnection
public MSAccessConnection(Rep_Properties prop)

Method Detail

 210

getConn
public java.sql.Connection getConn()

cvm.ucm.repository
Class MySQLConnection
java.lang.Object
 cvm.ucm.repository.MySQLConnection

public class MySQLConnection
extends java.lang.Object

Field Summary
private

 java.sql.Connection
conn

private
 java.lang.String

dbName

private
static java.lang.String

driver

private
 java.lang.String

hostname

private
 java.lang.String

password

private
 java.lang.String

port

private
 java.lang.String

url

private
 java.lang.String

username

Constructor Summary
MySQLConnection(Rep_Properties prop)

Method Summary
 java.sql.Connection getConn()

Methods inherited from class java.lang.Object

 211

clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

username
private java.lang.String username

password
private java.lang.String password

url
private java.lang.String url

hostname
private java.lang.String hostname

port
private java.lang.String port

dbName
private java.lang.String dbName

driver
private static java.lang.String driver

conn
private java.sql.Connection conn

Constructor Detail

MySQLConnection
public MySQLConnection(Rep_Properties prop)

Method Detail

getConn
public java.sql.Connection getConn()

cvm.ucm.repository
Class Rep_Default_Properties
java.lang.Object
 java.util.Dictionary<K,V>
 java.util.Hashtable<java.lang.Object,java.lang.Object>

 212

 java.util.Properties
 cvm.ucm.repository.Rep_Default_Properties
All Implemented Interfaces:

java.io.Serializable, java.lang.Cloneable,
java.util.Map<java.lang.Object,java.lang.Object>

public class Rep_Default_Properties
extends java.util.Properties

This class stores the default values for the system properties

Author:
Eduardo Monteiro

See Also:
Serialized Form

Field Summary

Fields inherited from class java.util.Properties
defaults

Constructor Summary
Rep_Default_Properties()

Method Summary

Methods inherited from class java.util.Properties
getProperty, getProperty, list, list, load, load, loadFromXML,
propertyNames, save, setProperty, store, store, storeToXML, storeToXML,
stringPropertyNames

Methods inherited from class java.util.Hashtable
clear, clone, contains, containsKey, containsValue, elements, entrySet,
equals, get, hashCode, isEmpty, keys, keySet, put, putAll, rehash,
remove, size, toString, values

Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait

 213

Constructor Detail

Rep_Default_Properties
public Rep_Default_Properties()

cvm.ucm.repository
Class Rep_Properties
java.lang.Object
 cvm.ucm.repository.Rep_Properties

public class Rep_Properties
extends java.lang.Object

This class stores the parameters required to create any type of repository.

Author:
Eduardo Monteiro

Field Summary
private java.io.File configFile

private

 java.lang.String
configFilename

static java.lang.String DB_HOST

static java.lang.String DB_NAME

static java.lang.String DB_PASSWORD

static java.lang.String DB_PORT

static java.lang.String DB_USERNAME

static java.lang.String FS_ROOT

private
 java.util.Properties

p

static java.lang.String REP_TYPE

 214

Constructor Summary
Rep_Properties()

Method Summary
 java.lang.String getProperty(java.lang.String prop)

static void main(java.lang.String[] args)

 java.lang.String toString()

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Field Detail

DB_USERNAME
public static final java.lang.String DB_USERNAME
See Also:

Constant Field Values

DB_PASSWORD
public static final java.lang.String DB_PASSWORD
See Also:

Constant Field Values

DB_HOST
public static final java.lang.String DB_HOST
See Also:

Constant Field Values

DB_PORT
public static final java.lang.String DB_PORT
See Also:

Constant Field Values

DB_NAME
public static final java.lang.String DB_NAME
See Also:

Constant Field Values

 215

REP_TYPE
public static final java.lang.String REP_TYPE
See Also:

Constant Field Values

FS_ROOT
public static final java.lang.String FS_ROOT
See Also:

Constant Field Values

p
private java.util.Properties p

configFilename
private java.lang.String configFilename

configFile
private java.io.File configFile

Constructor Detail

Rep_Properties
public Rep_Properties()

Method Detail

getProperty
public java.lang.String getProperty(java.lang.String prop)

toString
public java.lang.String toString()

Overrides:
toString in class java.lang.Object

main
public static void main(java.lang.String[] args)

cvm.ucm.repository
Class RepositoryType
java.lang.Object
 cvm.ucm.repository.RepositoryType

public abstract class RepositoryType
extends java.lang.Object

 216

This class holds the definition of the different repository types.

Author:
Eduardo Monteiro

Field Summary
static java.lang.String ACCESS

static java.lang.String FILE_SYSTEM

static java.lang.String MYSQL

Constructor Summary
RepositoryType()

Method Summary

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

ACCESS
public static final java.lang.String ACCESS
See Also:

Constant Field Values

MYSQL
public static final java.lang.String MYSQL
See Also:

Constant Field Values

FILE_SYSTEM
public static final java.lang.String FILE_SYSTEM
See Also:

Constant Field Values

Constructor Detail

 217

RepositoryType
public RepositoryType()

cvm.ucm.repository
Class SourceDBLoader
java.lang.Object
 cvm.ucm.repository.SourceDBLoader
All Implemented Interfaces:

Sources

public class SourceDBLoader
extends java.lang.Object
implements Sources

This class retrieves a Macro from a database given a function name. There is no
overloading of a function name. The schema for the table Macros, stored in the
Repository db, is {name:string, returnType:string, paramTypeList:string,
paramNameList:string, script:string}.

Field Summary
private

static java.sql.Connection
conn

private
static SourceDBLoader

instance

private
static java.sql.ResultSet

srs

private
static java.sql.Statement

stmt

Constructor Summary
private SourceDBLoader(java.sql.Connection c)

 Creates a new instance of MacroLoader

Method Summary
static SourceDBLoader Instance(java.sql.Connection c)

 * This is the Instance implementation of Singleton
Design Pattern.

 Macro loader(java.lang.String name)

 218

 Construct the Macro object from the information stored
in the database

private
 java.util.ArrayList

parser(java.lang.String s)
 To parse a string into and ArrayList

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

conn
private static java.sql.Connection conn

stmt
private static java.sql.Statement stmt

srs
private static java.sql.ResultSet srs

instance
private static SourceDBLoader instance

Constructor Detail

SourceDBLoader
private SourceDBLoader(java.sql.Connection c)

Creates a new instance of MacroLoader

Method Detail

Instance
public static SourceDBLoader Instance(java.sql.Connection c)

* This is the Instance implementation of Singleton Design Pattern.
Parameters:
c - Connection DB object.
Returns:
SourceDBLoader instance.

parser
private java.util.ArrayList parser(java.lang.String s)

To parse a string into and ArrayList
Parameters:
s: - the string to be parsed
Returns:
list: the ArrayList with the contents of the string token by token.

 219

loader
public Macro loader(java.lang.String name)
 throws java.lang.Exception

Construct the Macro object from the information stored in the database
Specified by:
loader in interface Sources
Parameters:
name: - the name of the function
Returns:
Macro: the Macro object for the given function.
Throws:
java.lang.Exception
See Also:
Macro

cvm.ucm.repository
Class SourceFileSysLoader
java.lang.Object
 cvm.ucm.repository.SourceFileSysLoader
All Implemented Interfaces:

Sources

public class SourceFileSysLoader
extends java.lang.Object
implements Sources

This class retrieves a Macro from a file system given a function name. There is no
overloading of a function name. This has been created for future implementation
availability.

Field Summary
private

static SourceFileSysLoader
instance

Constructor Summary
SourceFileSysLoader()

Method Summary

 220

static SourceFileSysLoader Instance()

 Macro loader(java.lang.String name)

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static SourceFileSysLoader instance

Constructor Detail

SourceFileSysLoader
public SourceFileSysLoader()

Method Detail

Instance
public static SourceFileSysLoader Instance()

loader
public Macro loader(java.lang.String name)

Specified by:
loader in interface Sources

cvm.ucm.repository
Class UCM_R_Facade
java.lang.Object
 cvm.ucm.repository.UCM_R_Facade

public class UCM_R_Facade
extends java.lang.Object

Façade class that provides an interface into the UCM_Repository subsystem. The purpose
of this class is to aid future expansion of this subsystem. OCL Statement: Context:
UCM_R_Facade inv: self<>null

Author:
Frank Hernandez

 221

Field Summary
private

 MacroLoader
repLoad

Constructor Summary
UCM_R_Facade()

Method Summary
 Macro loadMacro(java.lang.String name)

 This method creates a Macro object with the information obtained
from the source for a given function name OCL Statement: Context:
UCM_R_Facade::loadMacro(name) pre: name.length>0 Context:
UCM_R_Facade::loadMacro(name) post: self.loadMacro(pre.name) <>
null

static void main(java.lang.String[] args)
 Subsystem Test - Repository Subsystem.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

repLoad
private MacroLoader repLoad

Constructor Detail

UCM_R_Facade
public UCM_R_Facade()

Method Detail

loadMacro
public Macro loadMacro(java.lang.String name)
 throws java.lang.Exception

This method creates a Macro object with the information obtained from the source
for a given function name OCL Statement: Context:
UCM_R_Facade::loadMacro(name) pre: name.length>0 Context:
UCM_R_Facade::loadMacro(name) post: self.loadMacro(pre.name) <> null
Parameters:
name: - the name of the function whose macro is required

 222

Returns:
Macro object
Throws:
java.lang.Exception
See Also:
Macro

main
public static void main(java.lang.String[] args)

Subsystem Test - Repository Subsystem. Test Case ID: UCM_T_12 Unit Test -
UCM_R_Facade Unit Test UCM_T_26
Parameters:
args -

10.6 Appendix F – Documented Code for Test Driver

cvm.se
Class SynthesisEngine
java.lang.Object
 cvm.se.SynthesisEngine

public class SynthesisEngine
extends java.lang.Object

This class is a simple implementation of the Synthesis Engine.

Author:
Frank Hernandez

Field Summary
private

static SynthesisEngine
instance

Constructor Summary
private SynthesisEngine()

Method Summary

 223

static SynthesisEngine Instance()
 Implementation of the instance method as in the
Singleton Design Pattern.

static void main(java.lang.String[] args)
 Driver for the SE.

static void notify(Handles_Event event)
 This method handles the events reported to the SE.

static void resetSE()
 Resets the SE.

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
toString, wait, wait, wait

Field Detail

instance
private static SynthesisEngine instance

Constructor Detail

SynthesisEngine
private SynthesisEngine()

Method Detail

Instance
public static SynthesisEngine Instance()

Implementation of the instance method as in the Singleton Design Pattern.
Returns:
SynthesisEngine instance

resetSE
public static void resetSE()

Resets the SE.

notify
public static void notify(Handles_Event event)

This method handles the events reported to the SE.
Parameters:
event -

main
public static void main(java.lang.String[] args)

Driver for the SE. Runs Test Cases From ID: UCM_T_01 - UCM_T_14
Parameters:

 224

args -

10.7 Appendix G – Diary of meeting and tasks.

Place: ECS 212

Date: 09/03/2007 Facilitator: Dr.Peter Clarke

Start: 11:30AM Attending: Frank,Raidel,

Guangqiang,Abhishek

End: 12:30AM Minute Taker: Abhishek

1. Objective:

To get a brief idea of the CVM as a whole and also the specifics of our project. The

functioning of the UCM subcomponent and its interface with the SE and NCB

components.

2. Status:

Got an idea of our project details where we will be working on the UCM engine and

our users will be the SE and NCB subsystems. The discussions about the control

scripts and the particular function calls were held and handouts with information are

circulated.

3. Discussion:

Had a discussion on the control scripts and the functions to be achieved by UCM. The

NCB API’s and the function calls from SE is collected and circulated through mail.

4. Tasks:

It is decided that each project member will have to write 4 use cases.

 225

Place: VH 131

Date: 09/05/2007 Facilitator: Frank Hernandez

Start: 08:00PM Attending: Frank,Raidel,Guangqian

Eduardo,Marylurdys,

Abhishek

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To divide the use cases among the team members. 24 use cases are identified for the

different scenarios in the system and distributed equally among the 6 project team

members.

2. Status:

Each team member is assigned 4 use cases and 2 misuse cases.

3. Discussion:

The UCM architecture and its various functions are discussed. Also the different types

of event handling and exceptions are discussed.

4. Tasks:

All team members will write use cases and misuse cases before the next meeting.

 226

Place: VH 131

Date: 09/12/2007 Facilitator: Frank Hernandez

Start: 08:00PM Attending: Frank, Raidel, Eduardo,

Marylurdysh,

Guangqiang, Abhishek

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To plan the next phase of the Requirements Analysis. To work on the Analysis

Models and come up with the UML diagrams according to the Use Cases developed.

2. Status:

Presently, completed all the 24 use cases that are required. Each member contributed 4

use cases. 2 Misuse Cases need to be figured out and then can proceed with the next

step for Object Diagrams, Sequence Diagrams of the selected Use Cases.

3. Discussion:

Discussed on all the 24 Use Cases that are completed. Identified 8 use cases which are

important and which are going to be implemented. Object Diagrams and Sequence

Diagrams for the 8 Use Cases need to be worked on.2 Misuse Cases are also required

to be developed. Also had discussions on meeting times and other types of

communication means such as Skype among the team members.

4. Tasks:

Object Diagrams and Sequence Diagrams are distributed and assigned for each team

member.

Need to complete UML diagrams before the next meeting. Next meeting scheduled on

09/16. Also need to work on Misuse cases.

Every team member needs to join Google Groups for uploading stuffs and discussion

on Project

 227

Place: ECS 212

Date: 09/16/2007 Facilitator: Frank Hernandez

Start: 03:00PM Attending: Frank, Guangqia,

Marylurdys, Abhishek

End: 03:45PM Minute Taker: Abhishek

1. Objective:

To have a discussion on the status of the progress and also on the UML diagrams for

the 8 selected use cases.

2. Status:

Present status is that the entire use cases are completed by all the team members.

3. Discussion :

The SendSchema use case was selected for presentation in the next class. A brief ppt

on the system architecture and the SendSchema use case is discussed.

Had a discussion on the sequence diagrams for each team member. The Object

Diagram was not clear and Frank will talk to Dr.Clarke regarding that.

For use cases, values are required to be assigned to Scenarios. Also spelling errors

need to be checked along with the fixing of the constraints in the use cases.

Also had the requirement for Skype as means for virtual communication among the

team members apart from the weekly meetings.

4. Tasks:

Sequence Diagrams and Object Diagrams to be ready by all team members before

next meeting. Sequence Diagrams to be uploaded to Google Groups by Monday.

Use Cases to be fixed by every team member which are the Scenario values, spelling

errors and the constraints.

Mary will prepare and upload a sample PPT for the in-class presentation. She is also

going to present her use case(Send Schema).

All team members are asked to create a Skype account and post the respective ID’s as

soon as possible for better communication.

 228

Place: ECS 252

Date: 09/23/2007 Facilitator: Frank Hernandez

Start: 11:00AM Attending: Frank, Raidel, Eduardo,

Marylurdys,

Guangqiang, Abhishek

End: 01:00PM Minute Taker: Abhishek

1. Objective:

To complete the Software Requirements Document(SRD) and checking the Use Cases

of all the members for the final version of the deliverable. Also to develop some idea

about the class design for the major components of the subsystem for the next phase.

2. Status:

The Software Requirements Document (SRD) is completed with some minor

additions and the entire document compiled for the final deliverable. All the 24 Use

Cases form all the team members and 2 Misuse Cases along with the UML diagrams

for the Use Case Models and Analysis Models (Static and Dynamic) are complete to

be included in the SRD.

3. Discussion:

All the 24 Use Cases were checked completely by each member for Scenarios,

Constraints and errors in spelling. The Object Diagrams and the Sequence Diagrams

for the final 8 Use Cases were also checked for correctness. Team members had a

discussion on the basic software design plan with respect to Classes and the packages

that are needed to realize the basic architectural plan of the UCM subsystem. Also

discussed the interfaces that are required for communication with the NCB and the

SE.

4. Task

Checking the final document and if any modifications are necessary for the final

deliverable of the SRD. Develop some ideas regarding the classes and packages that

are required for communication among the subcomponents in the UCM. Once the

required basic software design is ready then it will be assigned among the team

members to work on individually for the final implementation of the system.

 229

Place: VH 131

Date: 10/10/2007 Facilitator: Marylurdys

Start: 08:30PM Attending: Frank,Raidel,

Guangqiang,Abhishek,

Eduardo

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To start working with the next phase i.e. Design Document. Identified the roles for

each member in the team and reviewed the main requirements for this phase.

2. Status:

The initial phase of Software Requirements Document(SRD) finished with delivering

the document and a presentation to the client. Now our team is ready for the System

Design and Object Design phases that we will be covering in this phase.

3. Discussion:

Had a preliminary discussion on the basic system architecture and what types of

architectural patterns to be used. Since we are required to use two patterns, so we have

to identify two basic patterns specific for our application.

4. Tasks:

All the team members were assigned to think and come up with ideas of architectural

patterns for our system as well as the basic classes that may be required to develop our

application. Also a brief idea of the subsystem decomposition in our system.

 230

Place: VH 131

Date: 10/17/2007 Facilitator: Marylurdys

Start: 08:00PM Attending: Frank,Raidel,Guangqian

Eduardo, Abhishek

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To finalize on the major subsystems that will be required for our implementation part

in the system. As well as to specify the interfaces for each subsystem and a brief

discussion on the type of architectural patterns to be employed among our subsystems.

2. Status:

We are started with our System Design phase, which mainly covers the Subsystem

Decomposition and specifying interfaces for each subsystem. Also started to build our

application code, which will help in identifying subsystems as well as architectural

patterns required for our system.

3. Discussion:

The main subsystems were discussed and reviewed. Also have shared some ideas of

packaging the subsystems. The major subsystems identified are : Manager, Interpreter,

Repository, Exception Handler, and EventHandler. The major functions of each

subsystem were identified and shared some views on the implementation details of the

system.

4. Tasks:

Team members were assigned to review the Subsystem Decomposition and develop

some basic ideas on the classes and objects that will be required for each subsystem.

Also, the packaging of subsystems are required to be done.

 231

Place: ECS 252

Date: 10/20/2007 Facilitator: Marylurdys

Start: 11:00PM Attending: Frank, Raidel,

Eduardo,Guangqiang,

Abhishek

End: 02:00PM Minute Taker: Abhishek

1. Objective:

To finalize the interfaces for the subsystem as well as the classes and methods

required for each class. To identify two architectural patterns that will be implemented

among the subsystems for our application.

2. Status:

Presently, finished with our subsystem decomposition and identifying the general

classes that are required. The detailed classes as well the methods and attributes for

the classes as well the interfaces need to be done before starting up with the Object

Design phase.

3. Discussion:

Based on our Subsystem Decomposition we identified the requirement for two

Architectural Patterns for our application, which will be Microkernel and Repository .

Microkernel architecture will be implemented on our major component i.e. Interpreter

and the Repository architecture will be implemented on our Database for loading and

retrieving macros.

4. Tasks:

Subsystems are divided among the team members so that we can start off with the

implementation phase. Frank, Raidel and Eduardo will work on Interpreter.

Maryludys and Abhishek will work on Repository. Guangqiang will be working on

ExceptionHandler and EventHandler subsystem. Before the next meeting we need to

have our subsystem interfaces ready and start off with the implementation.

 232

Place: VH 131

Date: 10/24/2007 Facilitator: Marylurdys

Start: 08:30 PM Attending: Frank, Guangqiang,

Eduardo, Raidel, Abhishek

End: 09:00 PM Minute Taker: Abhishek

1. Objective:

To have a discussion on our project status and getting started with the Object Design

phase of our project. Also need to discuss on the design patterns that we are going to

implement in our application for refinement of the system design and to identify if any

additional objects are required for our application.

2. Status:

Presently we have completed Subsystem Decomposition and the integration of our

Architectural Patterns in our system. Also completed with the specification of

subsystem interface and working on our implementation part.

3. Discussion :

The main discussion was on the subsystem interfaces that were developed by the team

members and whether any additional objects are required or not. Also shared views on

the various Design Patterns that could be implemented in our classes.

4. Tasks:

Each team member will carry on with its implementation for various subsystems. Also

need to develop some idea on the possible design patterns that could be implemented

for system realization.

 233

Place: ECS 252

Date: 10/27/2007 Facilitator: Marylurdys

Start: 01:00 PM Attending: Frank, Raidel,

Eduardo,Guangqiang,

Abhishek

End: 04:00 PM Minute Taker: Abhishek

1. Objective:

To complete the Design Document and the various points that are required to be

covered for the second deliverable. Reviewing the system architecture to identify the

design patterns that could be employed in our system. To track the status for each

implementation of subsystems.

2. Status:

The System Design phase is completed and we are in midway through our Object

Design phase. The subsystems were identified along with the architectural patterns

and a basic implementation framework is under progress.

3. Discussion:

We have decided on the four design patterns that are to be employed in our

application as Façade, Command, Singleton and Strategy for the various classes in

subsystems. The implementation classes should use this design patterns and work

further. The database schema defined and was loaded with a few tuples for checking

the implementation. The other parts of the application such as Parser, Interpreter,

Exception Handler and Manger is also under construction

4. Task :

The team members are required to submit the various classes from each subsystem

along with the basic description for each classes. The subsystems should be ready and

make to work completely as early as possible.

 234

Place: VH 131

Date: 11/07/2007 Facilitator: Eduardo

Start: 08:30PM Attending: Frank,Raidel,

Guangqiang,Abhishek,

Eduardo

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To start working with the next phase i.e. Testing Phase and the Final Deliverable.

Identified the roles for each member in the team in this phase and reviewed the main

requirements.

2. Status:

The second phase of Design Document is already finished and delivered to the client.

Now our team is ready to complete the final implementation part and then start off

with the Testing phase of the system.

3. Discussion:

We had a discussion on the final implementation details where we finalized that there

will be three types of Repository for storing Macros. The three types will be: MS

Access Database, MySQL Database and File System Organization. We decided on the

fact that we are going to implement the MS Access and MySQL DB as repository and

leave the File System Repository for future implementation but keeping the space for

it in our current implementation.

4. Tasks:

All the team members were given the deadline for finishing off their incomplete

implementation parts and any modifications for the same so that by the next meeting

we are completely done with the implementation. Also discussed a little bit on the

Testing and how we are going to implement the Testing phase.

 235

Place: ECS 252

Date: 11/10/2007 Facilitator: Eduardo

Start: 01:00PM Attending: Frank, Guangqian

Eduardo, Abhishek

End: 03:00PM Minute Taker: Abhishek

1. Objective:

To complete the implementation part and start off with the Testing Phase.

To discuss specific points on System Tests, Subsystem Tests and Unit Tests.

To generate and distribute the Test Cases among all the team members.

2. Status:

We are completed with the Implementation Phase and about to start off with the

Testing Phase where we need to generate Test Cases for System Test, Subsystem Test

and Unit Tests. We have also built up a general idea for our Testing phase which we

are going to implement it by developing test drivers and stubs and then a final

evaluation of all the Test Cases.

3. Discussion:

The Testing plan was reviewed and discussed among the team members and there are

some suggestions. We are required to write 24 Test Cases for System Tests and

Subsystem Test (3 Test Cases for each of the 8 Use Cases that are implemented).

Since our Use Cases are all the basic function calls to NCB or SE so we need to

develop test drivers and test code so that all the function calls are tested and verified

for its correct functioning.

4. Tasks:

All the Test Cases are evenly distributed among the team members and also the

necessary supporting codes that are required to execute the Test Cases for its correct

functioning. Test Cases are numbered by an unique identifier which corresponds to

the Use Case it tests and all the team members are required to complete the Test Cases

along with the respective tests before the next meeting.

 236

Place: VH 131

Date: 11/14/2007 Facilitator: Eduardo

Start: 08:00PM Attending: Frank, Raidel,

Eduardo,Guangqiang,

Abhishek, Marylurdys

End: 09:00PM Minute Taker: Abhishek

1. Objective:

To finalize and complete the Testing Phase where we are required to perform Unit Tests

for the classes in the state machine and also to complete with the evaluation of all the Test

Cases and complete the documentation for the Testing Phase.

2. Status:

Presently completed with the System Tests, Subsystem Tests and also the Unit Test. The

tasks to be finalized are the evaluation of the test results and the final documentation of the

Test results as well as the Final Deliverable.

3. Discussion:

Based on our state machine we have completed our Unit Test for the classes and also the

System Tests and Subsystem Tests. We discussed on the final evaluation report of all the

test cases and the documentation for the same. We also finalized on the various topics that

are needed to cover for the Final Deliverable. The complete document for the final

deliverable should be over as soon as possible.

4. Tasks:

The remaining tasks in hand are: User Guide for our System, Compiled Meeting Diary for

all the meetings in this project, Evaluation and complete documentation for the testing

phase and the entire source code to be copied in a CD and the final compilation of all the

required documents for the Final Deliverable. The Final Deliverable documents should be

ready by the next weekend ready for submission after which we can prepare for the Final

Presentation.

